
Thromboses and Hemostasis Disorders
Associated with COVID-19: The Possible Causal
Role of Cross-Reactivity and Immunological
Imprinting
Darja Kanduc1

1Department of Biosciences, Biotechnologies and Biopharmaceutics,
University of Bari, Bari, Italy

Glob Med Genet 2021;8:162–170.

Address for correspondence Darja Kanduc, PhD, Department of
Biosciences, Biotechnologies, and Biopharmaceutics, University of
Bari, Via Orabona 4, Bari 70125, Italy (e-mail: dkanduc@gmail.com).

Introduction

Clinical studies have shown that severe acute respiratory
syndrome-coronavirus-2 (SARS-CoV-2) infection can lead to
an increased incidence of disorders such as thrombosis,
venous thrombosis, and pulmonary embolism.1–3 A main
conclusion of these studies is that, although it cannot be
proven that the hypercoagulable state is a direct causative
effect of SARS-CoV-2 infection, nonetheless it is apparent
that patients with SARS-CoV-2 could have a predilection to
the occurrence of thromboembolic events.1

However, currently there are no hypotheses or data that
might suggest a molecular mechanism that relates to such
SARS-CoV-2-related thromboembolic events. Searching for
possible mechanisms, the present study analyzes the SARS-
CoV-2 spike glycoprotein (gp) for peptide sharing, that is,
molecular mimicry, with human proteins, alterations of
which may cause thromboses and hemostasis diseases. The
underlying scientific rationale is that peptides common to a
pathogen and the human host may lead to autoimmune
pathologies through cross-reactivity phenomena following
pathogen infection.4–6 The results indicate that several linear
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Abstract By examining the issue of the thromboses and hemostasis disorders associated with
severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) through the lens of
cross-reactivity, it was found that 60 pentapeptides are shared by SARS-CoV-2 spike
glycoprotein (gp) and human proteins that— when altered, mutated, deficient or,
however, improperly functioning— cause vascular diseases, thromboembolic compli-
cations, venous thrombosis, thrombocytopenia, coagulopathies, and bleeding, inter
alia. The peptide commonality has a relevant immunological potential as almost all of
the shared sequences are present in experimentally validated SARS-CoV-2 spike gp-
derived epitopes, thus supporting the possibility of cross-reactions between the viral
gp and the thromboses-related human proteins. Moreover, many of the shared peptide
sequences are also present in pathogens to which individuals have previously been
exposed following natural infection or vaccinal routes, and of which the immune
system has stored imprint. Such an immunological memory might rapidly trigger
anamnestic secondary cross-reactive responses of extreme affinity and avidity, in this
way explaining the thromboembolic adverse events that can associate with SARS-CoV-
2 infection or active immunization.
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sequences shared between the SARS-CoV-2 spike gp and
human proteins related to thromboembolic events can pos-
sibly generate pathogenic autoantibodies via cross-reactivity
and immunologic imprinting phenomena, in this way lead-
ing to thromboses and hemostasis disorders.

Materials and Methods

Peptide sharing between spike gp (NCBI, GenBank Protein
Accession, ID: QHD43416.1) from SARS-CoV-2 and human
proteins related to thromboses and hemostasis disorders
was analyzed as previously detailed.4–6 In brief, pentapep-
tides were used as sequence probes since a peptide grouping
formed by five amino acid (aa) residues defines a minimal
immune determinant that can (1) induce highly specific
antibodies, and (2) determine antigen–antibody specific
interaction.7,8 Human proteins linked to thromboses and
hemostasis disorders were retrieved from UniProtKB data-
base (www.uniprot.org).9 Methodologically the spike gp pri-
mary sequence was dissected into pentapeptides offset by
one residue (i.e., MFVFL, FVFLV, VFLVL, FLVLL, and so forth)

and the resulting viral pentapeptides were analyzed for
occurrences within the human proteins related to thrombo-
ses and hemostasis disorders. Then, the shared peptides
were also controlled for occurrences in the pathogens Bor-
detella pertussis, Corynebacterium diphtheriae, Clostridium
tetani, Haemophilus influenzae, and Neisseria meningitidis.

The immunological potential of the peptides shared be-
tween SARS-CoV-2 spike gp and thrombosis-related proteins
was analyzed by searching the Immune Epitope DataBase
(IEDB [www.iedb.org/])10 for immunoreactive SARS-CoV-2
spike gp-derived epitopes hosting the shared pentaptides.

Results and Discussion

Peptide Sharing between SARS-CoV-2 Spike
Glycoprotein and Thromboses-Related Human
Proteins
►Table 1 shows that 60 minimal immune determinants are
shared between SARS-CoV-2 spike gp and 44 human pro-
teins that—when altered, mutated, deficient or, however,
improperly functioning—may cause diseases that include

Table 1 Pentapeptide sharing between SARS-CoV-2 spike gp and human proteins linked when altered, mutated, or deficient to
blood diseases

Shared peptides Human proteins and associated functions/pathologiesa,b References

MTKTS, NLLLQ ADTRP (androgen-dependent TFPI-regulating protein)
Regulates the anticoagulant activity of the tissue factor pathway inhibitor, dys-
functions of which lead to vascular diseases

11

TQLPP, PRTFL ALG12: Dol-P-Man: Man(7)GlcNAc(2)-PP-Dol α-1,6-mannosyltransferase
Psychomotor retardation, hypotonia, coagulation disorders, and immunodeficiency

12

SAIGK ALG8: Dolichyl pyrophosphate Glc1Man9GlcNAc2 α-1,3-glucosyltransferase
Pathologies: see ALG12 above

13

AEIRA ANXA6 (annexin A6)
Anticoagulant protein from human placenta

14

QLIRA, IRASA AP3B1 (AP-3 complex subunit β-1)
Associates with Hermansky–Pudlak syndrome. Bleeding diathesis resulting in
bruising, epistaxis, gingival bleeding, postpartum hemorrhage, bleeding

15

LIGAE APLP2 (amyloid-like protein 2)
The soluble form may have inhibitory properties toward coagulation factors and
regulates cerebral thrombosis

16

VLLPL B3AT (band 3 anion transport protein)
Involved in venous thrombosis of unknown origin

17

FGGVS B4GT1 (β-1,4-galactosyltransferase 1)
Defects in the nervous system development, psychomotor retardation, dysmorphic
features, hypotonia, coagulation disorders

18

KGYHL C4BPB (C4b-binding protein β chain)
Controls complement activation; binds as a cofactor to C3b/C4b inactivator;
possibly involved in the susceptibility to venous thrombosis

19,20

LTVLP CBS (cystathionine β-synthase)
CBS-deficient patients are prone to vascular thrombosis

21

NSVAY CO1A1 (collagen α-1(I) chain)
Connective tissue disorders characterized by fragile, bruisable skin

22,23

PGQTG, NGLTG CO1A2 (collagen α-2(I) chain)
Pathology: see CO1A1 above

22,23

TQSLL, GTGVL COG1 (conserved oligomeric Golgi’s complex subunit 1)
Psychomotor retardation, hypotonia, coagulation disorders, and immunodeficiency

24

(Continued)
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Table 1 (Continued)

Shared peptides Human proteins and associated functions/pathologiesa,b References

STNLV, GAISS COG2. (conserved oligomeric Golgi’s complex subunit 2)
Pathology: as for COG1

25

PINLV COG5 (conserved oligomeric Golgi’s complex subunit 5)
Pathology: as for COG1

26

LPFQQ, PFQQF, IGKIQ ENTP1 (ectonucleoside triphosphate diphosphohydrolase 1)
Implicated in the prevention of platelet aggregation

27,28

YTSAL EPHB2 (ephrin type-B receptor 2)
Regulation of platelet activation and blood coagulation

29

VLNDI F13A (coagulation factor XIII A chain)
Relates to hematologic disorders characterized by bleeding tendency

30

DPLQP FA5 (coagulation factor V)
Central regulator of hemostasis. Parahemophilia, i.e., poor clotting; pregnancy loss,
ischemic stroke, thrombophilia

31–34

PPLLT, FVTQR FA8 (coagulation factor VIII)
Hemophilia

35

NSYEC FA9 (coagulation factor IX)
Hemophilia

35

SSANN FIBA (fibrinogen α chain)
Bleeding, amyloidosis, arterial hypertension, hepatosplenomegaly, cholestasis,
petechial skin rash; thromboembolic complications

36–38

GAGAA GATA4 (transcription factor GATA-4)
Regulates factor X, a vitamin K-dependent serine protease that functions in blood
coagulation. Can predispose to dilated cardiomyopathy, and to premature death

39–41

NDPFL GP1BA (platelet glycoprotein Ib α chain)
Epistaxis; hemorrhage; menorrhagia; purpura; congenital bleeding diathesis; large
platelets; thrombocytopenia; long bleeding time

42

ALLAG GPIX (platelet glycoprotein IX)
Epistaxis; hemorrhage; menorrhagia; purpura; congenital bleeding diathesis; large
platelets; thrombocytopenia; long bleeding time

42

KLIAN HABP2 (hyaluronan-binding protein 2)
Serine protease involved in coagulation fibrinolysis and inflammatory pathways

43

TQLPP HPS4 (Hermansky–Pudlak syndrome 4 protein)
Epistaxis; reduced visual acuity; horizontal nystagmus; iris transillumination; re-
strictive lung disease; bruising; bleeding tendency; menorrhagia; absence of
platelet dense bodies; lack of secondary aggregation response of platelets

44

HTSPD HPS5 (Hermansky–Pudlak syndrome 5 protein)
As HPS4 above

45

FNATR, DRLIT HS3S5 (heparan sulfate glucosamine 3-O-sulfotransferase 5)
Catalyzes a crucial step in the biosynthesis of the anticoagulant heparan sulfate

46

SASFS ITA2 (integrin α-2)
Associates with increased ischemic stroke risk; thrombophilia

47,48

VRDLP ITB3 (integrin β-3)
Thrombasthenia, characterized by mucocutaneous bleeding

49

FGTTL, YDPLQ, GDISG JAK2 (tyrosine-protein kinase JAK2)
Thrombophilia, thrombocytosis

50,51

VNLTT, GDSSS, VTYVP MMRN1 (multimerin-1)
Deficiency in multimerin-1 associates with bleeding disorder

52

LLPLV PLF4 (Platelet factor 4)
Involved in thrombosis

53

TFGAG PLMN (plasminogen) may be associated with susceptibility to thrombosis 54

TVEKG, TGTGV PROS: vitamin K-dependent protein S
Anticoagulant plasma protein. Helps to prevent coagulation and stimulates fibri-
nolysis. Deficiency leads to impaired blood coagulation and a tendency to venous
thrombosis

55,56

Global Medical Genetics Vol. 8 No. 4/2021 © 2021. The Author(s).

COVID 19: Cross-Reactivity and Thromboses Kanduc164



coagulation disorders, bruising, bleeding, hemorrhages, ret-
inal vessel occlusion, cerebral thrombosis, venous thrombo-
sis, ischemic stroke, and thrombophilia, inter alia.

Immunological Potential of the Viral versus Human
Peptide Sharing
The data shown in ►Table 1 are quantitatively impressive
and become strikingly preeminent from a pathological per-
spective when analyzed for their immunological potential.
Indeed, exploration of the IEDB10 reveals that nearly all the
shared pentapeptides described in►Table 1 are also dissem-
inated among SARS-CoV-2 spike gp-derived epitopes that
have been experimentally validated as immunoreactive and
are cataloged at the IEDB database (http://www.iedb.org).10

That is, ►Table 2 concretely supports the possibility that
autoimmune cross-reactionsmay be triggered by SARS-CoV-
2 infection/active immunization and hit human proteins
related to thrombotic/thromboembolic disorders and coa-
gulopathies, inter alia. Clinically, the vastity of the potential
immunological cross-reactivity that emerges from ►Table 2

indicates that mild-to-moderate and severe forms of throm-
bosis and coagulopathy may unavoidably accompany SARS-
CoV-2 infection/active immunization.

Autoimmunity Potential and the Immunological
Memory
As already highlighted also in other infection models,68–71

one has to consider that immunologic memory can
powerfully enhance and amplify the autoimmune cross-
reactivity potential because of interpathogen peptide shar-
ing. Indeed, as a rule, the immune system recalls preexisting

memory responses toward past infections rather than induc-
ing ex novo responses toward the recent ones since hallmark
of the immune system is the memory for the immune
determinants it has previously encountered.72,73

Here, comparative sequence analyses show that 31 out of the
60minimal immunedeterminantscommontoSARS-CoV-2spike
gp and human proteins related to thromboses are also wide-
spreadinpathogens, suchasB.pertussis,C.diphtheriae,C. tetani,H.
influenzae, andN.meningitidis, that are in pathogenswithwhich,
in general, an individual has alreadycome into contact during his
life due to infections or by vaccination (►Table 3).

Hence, ►Table 3 indicates the possibility that a preexist-
ing immune response to previously encountered pathogens
(in the present case: B. pertussis, C. tetani, C. diphtheriae, H.
influenzae, and/or N. meningitidis) might be magnified and
intensified following SARS-CoV-2 infection/active immuni-
zation. That is, immunological imprinting can start a chain of
events according to which followings can be measured:

• Following exposure to SARS-CoV-2, the primary response
to the virus can turn into a secondary response to previ-
ously encountered pathogens of which the immune sys-
tem has stored an immunological memory.

• The anamnestic secondary and, by definition, extremely
powerful response against immune determinants previ-
ously encountered implies not only that a low or no
immune response will be evoked against the pathogen
lastly encountered, that is, SARS-CoV-2, but also entails
that the anamnestic secondary reaction against the early
sensitizing pathogens—in the case in point, B. pertussis, C.
tetani, C. diphtheriae, and/or N. meningitidis—will fail

Table 1 (Continued)

Shared peptides Human proteins and associated functions/pathologiesa,b References

LALHR PROZ: vitamin K-dependent protein Z
Helps hemostasis by binding thrombin and promoting its association with phos-
pholipid vesicles. Deficiency may be a risk factor for retinal vessel occlusion

57

IDRLI PTPRJ: receptor-type tyrosine-protein phosphatase η
Lack of PTPRJ leads to a bleeding tendency and defective arterial thrombosis

58

VFAQV TF (tissue factor): Initiates blood coagulation by forming a complex
with circulating factor VII or VIIa

59

LFRKS THRB: Prothrombin: Functions in blood homeostasis 60

AGAAL, GAALQ TRBM (thrombomodulin)
Relates to thrombophilia, venous thrombosis, and thromboembolic disease. TRBM
administration is beneficial in sepsis-induced coagulopathy and in disseminated
intravascular coagulations

61–63

TLLAL TSP1 (thrombospondin-1): Coronary artery disease 52,64

TLLAL, SCGSC TSP2 (thrombospondin-2): Coronary artery disease 52,64

VSSQC, LQYGS VWF (von Willebrand factor)
Von Willebrand’s disease is characterized by deficiency of circulating VWF that is
otherwise structurally and functionally normal. Clinical features: impaired platelet
aggregation, cardiovascular diseases, mucocutaneous bleeding, epistaxis,
menorrhagia

52,65–67

Abbreviations: gp, glycoprotein; SARS-CoV-2, severe acute respiratory syndrome-coronavirus-2.
aHuman proteins given by Uniprot accession and name in italics.
bFunctions and/or pathologies: data and further references from Uniprot, PubMed, and OMIM databases
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Table 2 Distribution of peptides shared between SARS-CoV-2 spike gp and human proteins related to thromboses and hemostasis
disorders among 94 experimentally validated SARS-CoV-2 spike gp-derived epitopes

IDa Epitopeb IDa Epitopeb

1069137 aqYTSALLAGtitsg 1309555 qcVNLTTrTQLPPaytnsft

1069290 ctlksfTVEKGiyqt 1309558 qfnSAIGKIQdslsstasal

1071585 nlVRDLPqgfsalep 1309564 qtragcLIGAEhvnNSYECd

1071723 patvcgpkkSTNLVknkc 1309573 rLFRKSnlkpferdisteiy

1072807 skhtPINLVRDLPqg 1309595 tnftisvtteilpvsMTKTS

1072965 svtteilpvsMTKTS 1309598 tvYDPLQPeldsfkeeldky

1073281 tesnkkfLPFQQFgrdia 1309599 Tyvpaqeknfttapaichdg

1073938 vqIDRLITgrlqslq 1309600 tyvtqQLIRAAEIRASAnla

1074201 ylyrLFRKSnlkpfe 1309602 vcgpkkSTNLVknkcvnfnf

1074838 AEIRASAnlaatk 1309603 vknkcvnfnfNGLTGTGVLt

1074925 hVTYVPaqeknf 1309604 VLNDIlsrldkveaevqidr

1074969 lgaeNSVAYsnn 1309621 yskhtPINLVRDLPqgfsal

1074974 lLALHRsyl 1310254 aeNSVAYsnnsiaip

1075005 nqKLIANqf 1310281 aphgvvflhVTYVPa

1075031 rLFRKSnlk 1310303 caqkfngLTVLPpll

1075039 rqiaPGQTGkiadynykl 1310336 dskTQSLLivnnatn

1075066 sVLNDIlsrl 1310392 FGTTLdskTQSLLiv

1075079 tPINLVrdl 1310401 fkiyskhtPINLVrd

1075085 tvYDPLQPeldsfk 1310415 fngLTVLPPLLTdem

1075094 vlPPLLTdemiaqyt 1310434 GAISSVLNDIlsrld

1075125 ysvlynSASFStfk 1310444 givnntvYDPLQPel

1075131 yyvgylqPRTFLl 1310487 iginitrfqTLLALh

1087680 PINLVRDLPqgfsalepl 1310506 irgwiFGTTLdsktq

1125063 gLTVLPpll 1310513 itrfqTLLALHRsyl

1309117 ggnynylyrLFRKSn 1310592 lLALHRsyltpgdss

1309118 gpkkSTNLVknkcvn 1310611 lPPLLTdemiaqyts

1309123 khtPINLVRDLPqgf 1310633 lyenqKLIANqfnsa

1309140 tdemiaqYTSALLAG 1310787 SASFStfkcygvspt

1309147 ylqPRTFLl 1310828 svlynSASFStfkcy

1309418 AEIRASAnlaatkmsecvlg 1310852 tlvkqlssnfGAISS

1309442 ayyvgylqPRTFLlkyneng 1310865 trfqTLLALHRsylt

1309450 dplsetkctlksfTVEKGiy 1310899 VLLPLVSSQCVNLTT

1309451 dsfkeeldkyfknHTSPDvd 1310909 VNLTTrTQLPPaytn

1309461 ehvnNSYECdipigagicas 1310927 vtqnvlyenqKLIAN

1309464 esnkkfLPFQQFgrdiadtt 1310947 wTFGAGAALQipfam

1309469 fknHTSPDvdlGDISGinas 1310979 yvgylqPRTFLlkyn

1309470 fknidgyfkiyskhtPINLV 1311657 ccSCGSCckfdeddsepvlkgvkl

1309475 gccSCGSCckfdeddsepvl 1311813 rLFRKSnlkp

1309492 ilditpcsFGGVSvitpgtn 1313244 nSASFStfk

1309506 kvggnynylyrLFRKSnlkp 1313285 PINLVRDLPqgfsal

1309515 lhrsyltpGDSSSgwtagaa 1313286 PINLVRDLPqgfwal

1309516 litgrlqslqtyvtqQLIRA 1314023 ynylyrLFRKSnlkp

Global Medical Genetics Vol. 8 No. 4/2021 © 2021. The Author(s).

COVID 19: Cross-Reactivity and Thromboses Kanduc166



because those early sensitizing pathogens are no more
present in the organism.

• As afinal result, the anamnestic, high affinity, high avidity,
and extremely powerful secondary immune response
triggered by the lastly encountered pathogen (SARS-
CoV-2) and addressed toward past infections may find
an outlet by hitting available human targets, that is, in the
case in object, the human proteins related to thromboses
and hemostasis diseases (►Table 1).

Conclusion

The last decades witnessed the emerging of infectious
diseases and, consequently, intensive application of im-
munization procedures. Concomitantly, concerns about
possible adverse events have increased. A recent crucial
example is the immunization campaign with the dengue
vaccine that highlighted the risk of enhanced disease after
vaccination.74

Today, the clinical context associated with SARS-CoV-2
infection/active immunization is no different. Actually, un-
derstanding whether undesired collateral events, such as the
thrombotic manifestations and bleeding disorders discussed
in this study, may causally associate with the viral
infection/active immunization is a fundamental step for
fighting the current pandemic. In this context, the present
study:

• Analyzed the hypothesis that infectious agents can induce
cross-reactive autoantibodies capable of hitting and al-

tering human proteins that regulate hemostasis and
coagulation.

• Showed that numerous peptides endowed with an im-
munologic potential are common to SARS-CoV-2 spike gp
and human proteins, when mutated, altered, deficient or
improperly functioning, are associated with thromboses
and hemostasis diseases (►Tables 1 and 2).

• Documented that the peptide commonality extends to
pathogens that usually have been already encountered by
an individual during his life (►Table 3).

Scientifically, the data indicate that peptide sharing–
associated cross-reactivity and, in conjunction, immunolog-
ical imprint might help explain some of the thromboembolic
events that rapidly, massively, and violently may arise fol-
lowing SARS-CoV-2 infection/active immunization.

Clinically, the present data warrant testing of patients’
sera for autoantibodies against the peptide targets described
in ►Tables 1–2 and 3, and reiterate the suggestion advanced
already in 200075 that immunotherapies should take advan-
tage of the principle of peptide uniqueness, that is, of
peptides present in the antigen of interest and absent in
the human proteome.71,76–81
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Table 2 (Continued)

IDa Epitopeb IDa Epitopeb

1309523 lssnfGAISSVLNDIlsrld 1317916 gylqPRTFLl

1309524 lyenqKLIANqfnSAIGKIQ 1321084 lPPLLTdem

1309531 NGLTGTGVLtesnkkflpfq 1327418 vYDPLQPeldsf

1309532 ngLTVLPPLLTdemiaqyts 1327923 yenqKLIANqf

1309534 nitrfqTLLALHRsyltpgd 1328800 ytmslgaeNSVAY

Abbreviations: gp, glycoprotein; SARS-CoV-2, severe acute respiratory syndrome-coronavirus-2.
aEpitopes listed as the Immune Epitope DataBase ID.
bShared peptides given in capital letters.

Table 3 Occurrence in microbial organisms of pentapeptides common to SARS-CoV-2 spike gp, SARS-CoV-2 spike gp-derived
epitome, and human proteins related to thromboses, coagulopathies, and hemostasis disorders

Organism Shared peptides

Bordetella pertussis AEIRA, AGAAL, ALLAG, GAALQ, GAGAA, LLPLV, PFQQF, QLIRA, SSANN, TGTGV, VLLPL,
YDPLQ

Corynebacterium diphtheriae AEIRA, AGAAL, ALLAG, DPLQP, GAALQ, GAGAA, GTGVL, LLPLV, TVEKG

Clostridium tetani AGAAL, LQYGS

Haemophilus influenzae AEIRA, AGAAL, FGGVS, GAALQ, GAGAA, GTGVL, KLIAN, LALHR, LLPLV, LPFQQ, LTVLP,
NLLLQ, NSVAY, TLLAL, TQSLL, VLLPL, VLNDI, VNLTT, YTSAL

Neisseria meningitidis AEIRA, AGAAL, ALLAG, DRLIT, GAALQ, GAGAA, IDRLI, KLIAN, LALHR, LTVLP, PINLV, TLLAL,
VLLPL, VLNDI

Abbreviations: gp, glycoprotein; SARS-CoV-2, severe acute respiratory syndrome-coronavirus-2.
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