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Abstract Background Semantic textual similarity (STS) captures the degree of semantic
similarity between texts. It plays an important role in many natural language process-
ing applications such as text summarization, question answering, machine translation,
information retrieval, dialog systems, plagiarism detection, and query ranking. STS has
been widely studied in the general English domain. However, there exists few resources
for STS tasks in the clinical domain and in languages other than English, such as
Japanese.
Objective The objective of this study is to capture semantic similarity between
Japanese clinical texts (Japanese clinical STS) by creating a Japanese dataset that is
publicly available.
Materials Wecreated two datasets for Japanese clinical STS: (1) Japanese case reports
(CR dataset) and (2) Japanese electronic medical records (EMR dataset). The CR dataset
was created from publicly available case reports extracted from the CiNii database. The
EMR dataset was created from Japanese electronic medical records.
Methods We used an approach based on bidirectional encoder representations from
transformers (BERT) to capture the semantic similarity between the clinical domain
texts. BERT is a popular approach for transfer learning and has been proven to be
effective in achieving high accuracy for small datasets. We implemented two Japanese
pretrained BERT models: a general Japanese BERT and a clinical Japanese BERT. The
general Japanese BERT is pretrained on Japanese Wikipedia texts while the clinical
Japanese BERT is pretrained on Japanese clinical texts.
Results The BERT models performed well in capturing semantic similarity in our
datasets. The general Japanese BERT outperformed the clinical Japanese BERT and
achieved a high correlation with human score (0.904 in the CR dataset and 0.875 in
the EMR dataset). It was unexpected that the general Japanese BERToutperformed the
clinical Japanese BERTon clinical domain dataset. This could be due to the fact that the
general Japanese BERT is pretrained on a wide range of texts compared with the clinical
Japanese BERT.
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Introduction

Semantic textual similarity (STS) aims to compute the degree
of semantic equivalence between texts based on the seman-
tic content and meanings. It is common in many general
English domain tasks such as text summarization, question
answering, machine translation, information retrieval, dia-
log systems, plagiarism detection, and query ranking.1 Al-
though STS is similar to plagiarism detection, there are two
major differences. First, plagiarism detection finds whether
texts are similar, whereas STS finds the degree of similarity.
Second, plagiarism detection uses texts from the internet for
comparison, whereas STS uses texts depending on the re-
search interests. STS is also related to paraphrase detection
and textual entailment. There is a difference in that STS aims
to capture the level of semantic equivalence, whereas para-
phrase detection and textual entailment are a binary yes/no
decision.1,2 ►Fig. 1 shows an example of semantic textual
similarity.

Dueto its applicationacrossdiverse tasks,manyapproaches
to compute semantic similarity have been proposed. Existing
approaches include corpus-based and knowledge-basedmod-
els,3 machine learning-based models,4–7 neural networks-
basedmodels,8–13 and BERT-basedmodels.11,14 Corpus-based
method measure the degree of similarity between texts by
using information exclusively extracted from a large corpus.
Knowledge-based method measure the semantic similarity
based on information extracted from semantic networks or
structured resources like dictionaries, encyclopedias, thesau-
ruses, Wikipedia, or WordNet.

Chen et al.5 achieved the best performance in the 2018
clinical STS shared task.15 Their proposed model employed
traditionalmachine learning and deep learning. They trained
a model with 63 features which included string-based,
entity-based, number, and deep learning-based similarity
features. Moreover, Zhao et al7 used latent semantic analysis
to learn vector-space representations, together with hand-
crafted features. Although traditional NLP approaches such
as designing handcrafted features achieve good perfor-
mance, they suffer from sparsity due to lack of large anno-
tated data and language ambiguity.10

Mueller and Thyagarajan9 proposed Siamese long short-
term memory (LSTM) network for labeled data consisting of
sentence pairs with variable length. Their approach relies on
pretrainedword-embeddings16 and synonymaugmentation.
Further, Tai et al13 proposed Tree-LSTMswhich use syntactic
trees to construct sentence representations. The standard
LSTM model determines the hidden state from the current
time-step input and previous time-step’s hidden state. How-
ever, the Tree-LSTM model determines its hidden state from
an input vector and the hidden states of all child units. The
basic idea is that, by reflecting the sentence syntactic prop-
erties, the tree network can efficiently propagate more
information than the standard sequential architecture.

Recently bidirectional encoder representations from
transformers (BERT)14 has achieved state-of-the-art perfor-
mance inmore than 10 NLP tasks. It is a popular approach for
transfer learning and has been proven to be effective in

achieving good accuracy for small datasets.14,17 It can be
used for tasks whose input is a sentence pair, such as
sentence pair regression, question answering, and natural
language inference. It learns distinctive embedding for the
sentences so as to help the model in differentiating the
sentences.

SemEval (semantic evaluation) shared tasks have been
held since 2012 to encourage the development of automated
methods for STS tasks.1,2,18–21 English STS has been widely
studied with proposed state-of-the-art systems achieving
high correlation (Pearson correlation score >80%) with hu-
man judgment.2 However, these previous tasks focus on the
general English domain. There exist very few resources for
STS tasks in the clinical domain due to restricted access to
clinical data because of patient privacy and confidentiali-
ty.15,22Wang et al15,22 created an English clinical STS dataset
from actual notes at Mayo clinic and organized shared tasks
in 2018 and 2019. In their dataset, they removed all the
protected health information, and the dataset can be
accessed by signing a Data Use Agreement.

In this study we created two datasets for Japanese clinical
STS: (1) Japanese case reports (CR dataset) and (2) Japanese
electronic medical records (EMR dataset). As previously
mentioned, the reason for few resources in the clinical
domain is due to data privacy, which prohibits public sharing
of medical data. To overcome this challenge, we created one
dataset from a public resource, and made this dataset pub-
licly available.a Specifically, the CR dataset was created by
extracting case reports from CiNii,b a Japanese database

Fig. 1 Semantic textual similarity example. Given a sentence-pair, a
model computes semantic similarity score on a scale from 0 (low
semantic similarity) to 5 (high semantic similarity).

a The dataset is available at https://github.com/sociocom/Japa-
nese-Clinical-STS.

b https://ci.nii.ac.jp/.
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containing research publications in Japanese and English.
Although research publications are different from real clini-
cal texts, they have been widely used in various clinical
natural language processing (NLP) researches to fill the gap
for lack of publicly available real clinical texts. We also
created a second dataset, the EMR dataset, from real clinical
documents, however, this dataset is not publicly available.

Moreover, we used a BERT-based approach to capture the
semantic similarity between texts. Recently many pre-
trained models, both general domain and domain-specific,
have been developed. We investigate the performance of
general and clinical domain pretrained Japanese BERT mod-
els on clinical domain datasets. Therefore, our contributions
include:

1. Creating a publicly available dataset for Japanese sen-
tence-level clinical STS from a public resource (CiNii) due
to privacy issues associated with hospital clinical data.

2. Comparing the performance of the general and clinical
Japanese BERT models.

Methods

Materials
This study used two Japanese datasets: case reports (CR
dataset) and EMR documents (EMR dataset). We created
the CR dataset from case reports which is publicly available.c

By using the CR dataset, model performance can be mea-
sured with a publicly shareable dataset. In contrast, the EMR
dataset was generated from medical documents and is not
publicly available. The datasets consist of sentence pairs
annotated on a scale from 0 (low semantic similarity) to 5
(high semantic similarity), where 0 means that the two-
sentence pairs are completely dissimilar, i.e., their meanings
do not overlap, and 5 means that the sentence pairs are
completely similar semantically.

Japanese Case Reports (CR Dataset)
We created a publicly available datasetc to motivate research
on Japanese clinical STS. There exist few resources for clinical
STS tasks due to data privacy and confidentiality issues that
prohibit public sharing of medical data. To overcome this
challenge and create a publicly available dataset, we extract
Japanesecase reports fromCiNiid,which is a Japanesedatabase
containing articles published to Japanese journals and confer-
ences. Japanese case reports were extracted from CiNii in PDF
format (1,747 documents). The PDF documents were then
converted to OCR format and split into sentences. Sentences
that generally would not be found in real clinical documents
suchas references, authoraffiliations, andsoonwere removed.

After extracting all sentences, we created a dataset by
using all possible combinations of sentence pairs. This
resulted in a huge number of sentence pairs. Choosing
sentence pairs randomly would have likely resulted in a
dataset where the semantic similarity scores are highly

imbalanced. Therefore, we adopted the approach used in
previous tasks (SemEval1–21 and MedSTS22). These previous
studies use string similarity approaches to select sentence
pairs for annotation. Although string similarity cannot en-
tirely capture semantic similarity, they can capture some
level of surface/syntactic similarity and hence significantly
reduce the human effort required in selecting sentence pairs
for annotation.

In this study, we used Python simstring librarye to com-
pute cosine similarity between the sentence pairs. Cosine
similarity returns a score between 0 and 1. About 4,000
sentence pairs across all scores (0 to 1)were then selected for
annotation by staff with medical background. The annotator
assigned each sentence pair with a similarity score 0 (low
semantic similarity) to 5 (high semantic similarity) depend-
ing on the semantic similarity. A second annotator annotated
10% of the data, and the annotators had a weighted Cohen
Kappa agreement of 0.67, which can be regarded as accept-
able for NLP tasks.23Weused the same annotation guidelines
as used in previous STS tasks1,2,15,18–22 as shown
in ►Supplementary Appendix A, available in the online
version only. ►Fig. 2 shows the distribution of semantic
similarity scores in the CR dataset.

Japanese Electronic Medical Documents (EMR Dataset)
This dataset was created from actual Japanese medical docu-
ments consisting of radiography reports and electronic
health record (EHR) notes. The EHR notes consist of progress
notes. The radiography reports were provided by the Nation-
al Cancer Center Japan, and the EHR notes were provided by
Osaka University Hospital.24 We filtered medical documents
for patients withmore than one entry and created document
pairs based in chronological order as [dt, dtþ1]. We asked the
annotator to read sentences in dt and determine their
semantic similarity with sentences in dtþ1. This dataset
consists of approximately 2,000 sentence pairs annotated
with semantic similarity scores from0 to 5 similarly to the CR

Fig. 2 Distribution of semantic similarity scores in the Japanese case
report dataset.

c The dataset is available at https://github.com/sociocom/Japa-
nese-Clinical-STS.

d https://ci.nii.ac.jp/. e https://pypi.org/project/simstring-pure/
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dataset. ►Fig. 3 shows the distribution of the semantic
similarity scores in the EMR dataset.

Model
We adopted BERT14 since it has been proven to be effective in
achieving good accuracy for small datasets14,17,25 like ours.
Whereas data scarcity is one of the biggest challenges in NLP
tasks, most NLP tasks require large amounts of training data
so as to achieve reasonable accuracy. Dataset creation and
annotation are expensive in terms of time and labor, and data
are not available especially in the clinical domain. This
challenge can be addressed by pretraining general domain
language models using huge amounts of unlabeled data.1

These pretrained models can be fine-tuned to specific tasks.
It takes a lot of time to train the original BERTmodel from the
beginning, and therefore training on a fine-tuned model
reduces the time and memory usage.

Pretrained BERT models, both general domain and do-
main-specific, have been developed. General domainmodels
are pretrained on cross-domain texts and therefore lack
domain-related knowledge. Also, the linguistic character-
istics of general domain texts and clinical domain texts are
different hence creating the need for domain-specific BERT
models.26 In this study we investigate the performance of
general Japanese BERTf and clinical Japanese BERT27 models.
The general Japanese BERT is pretrained on Japanese Wiki-
pedia texts while the clinical Japanese BERT is pretrained on
Japanese clinical texts (mainly notes by physicians and
nurses) at University of Tokyo Hospital.27

The most common approach to use BERT is a feature-
based approach where fine-tuning is not required, and
instead the BERT vectors are used like word embeddings.
The output of the BERT CLS token can also be used as a feature
vector. The CLS (classification) token is a special BERT token
added at the start of a sequence and represents the entire
sequence.14 Reimers and Gurevych11 suggested that averag-
ing the output of BERT or using the CLS token does not
achieve good performance. They investigated different pool-

ingmethods for the BERToutput such asmean andmaximum
pooling. However, the best strategy for extracting the feature
vectors is still an open problem.

►Fig. 4 shows the overview of our model. The input
consists of a sequence of tokens of the two sentences
concatenated by a special token, [SEP]. The input sequence
also has the [SEP] token at the end to show the end of the
input. The first token of the input sequence is the BERT
special classification token, [CLS]. BERT encodes the sentence
pair, and passes the final hidden state of the [CLS] as a
representation of the input sequence. The output of the
[CLS] token is passed to a fully connected linear output layer
to calculate the semantic similarity score. The CR and EMR
datasets are annotated on a discrete scale from0 to 5 (i.e., 0, 1,
2, 3, 4, 5). We approached it as a classification problem and
used a linear classifier with cross-entropy loss.28

Results

Experimental Settings
The CR and EMR datasets were split into 70% training set and
30% test set, respectively. Also, we prepared additional
training set, n2c2, by translating the n2c2/OHNLP English
dataset to Japanese using Googletrans, which is a python
library that communicates with Google Translate APIg. This
n2c2/OHNLP dataset was provided in the 2019 n2c2/OHNLP
Clinical Semantic Textual Similarity shared task, and is
discussed in Wang et al.15,22 In our experiments we do
different combinations of the training data, to see how
different datasets with different language variability affect
the model performance.

We consider two experimental settings which we refer to
as strict and relaxed. In the strict setting, we use the six scale
semantic similarity scores (i.e., 0, 1, 2, 3, 4, 5) as discussed in
the data annotation guidelines. In the relaxed setting, we
consider a four scalewhere we combine scores 1 and 2, and 3
and 4, i.e., (0, [1, 2], [3, 4], 5). In the annotation guidelines
(refer to►Supplementary Appendix A, available in the online
version only) the annotators stated that sometimes it was
difficult to choose between semantic similarity scores 3 and
4. This is because, in some cases it is difficult to decide what
constitutes “important” and “unimportant” information.
Similarly, the same problem was experienced for semantic
similarity scores 1 and 2. Therefore, we consider the relaxed
setting for uniformity. We also expect that by using this kind
of setting the classification performance can be improved.

Performance of General and Clinical Japanese BERT
Models
We evaluated the performance based on two evaluation
metrics; the Pearson correlation coefficient (as in the previ-
ous STS shared tasks1,2,18–22) and classification accuracy
between the predicted scores and gold scores. ►Tables 1

and 2 show the results for the CR and EMR test sets,
respectively. Both models, the general Japanese BERT and
the clinical Japanese BERT, achieved a good performance. In

Fig. 3 Distribution of semantic similarity scores in the EMR dataset.
EMR, electronic medical record.

f https://github.com/cl-tohoku/bert-japanese g https://pypi.org/project/googletrans/
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Table 1 CR results based on Pearson correlation and classification accuracy

Strict Relaxed

Model Training data Pearson Accuracy Pearson Accuracy

General Japanese BERT CR 0.904 72% 0.878 79%

EMR 0.730 33% 0.749 53%

n2c2 0.716 35% 0.705 55%

CRþ EMR 0.897 71% 0.882 78%

CRþ EMRþ n2c2 0.895 71% 0.879 78%

Clinical Japanese BERT CR 0.890 67% 0.854 75%

EMR 0.745 29% 0.696 47%

n2c2 0.656 25% 0.613 39%

CRþ EMR 0.885 68% 0.862 76%

CRþ EMRþ n2c2 0.870 69% 0.855 75%

Abbreviations: BERT, bidirectional encoder representations from transformers; CR, case report; EMR, electronic medical record.

Fig. 4 Overview of our model.

Table 2 EMR results based on Pearson correlation and classification accuracy

Strict Relaxed

Model Training data Pearson Accuracy Pearson Accuracy

General Japanese BERT CR 0.692 53% 0.692 68%

EMR 0.864 79% 0.860 84%

n2c2 0.569 33% 0.558 63%

CRþ EMR 0.856 79% 0.857 85%

CRþ EMRþ n2c2 0.875 81% 0.870 86%

Clinical Japanese BERT CR 0.685 44% 0.693 62%

EMR 0.845 76% 0.824 82%

n2c2 0.521 23% 0.513 52%

CRþ EMR 0.862 79% 0.848 83%

CRþ EMRþ n2c2 0.848 78% 0.833 82%

Abbreviations: BERT, bidirectional encoder representations from transformers; CR, case report; EMR, electronic medical record.
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the CR results, the general Japanese BERT achieved a Pearson
correlation of 0.904 and 72% accuracy, whereas the clinical
Japanese BERT best Pearson correlation and accuracy were
0.890 and 69%, respectively, in the strict setting. In the
relaxed setting, the general Japanese BERT highest Pearson
score and accuracy were 0.882 and 79%, respectively, while
the clinical Japanese BERT achieved Pearson score of 0.862
and 75% accuracy.

In the EMR results, the general Japanese BERT best Pear-
son score and accuracy were 0.875 and 81%, respectively,
while the clinical Japanese BERT achieved Pearson score of
0.862 and 79% accuracy in the strict setting. In the relaxed
setting, the general Japanese BERT Pearson score and accu-
racy were 0.870 and 86%, respectively, whereas the clinical
Japanese BERT were 0.848 and 83%, respectively. Although
both BERT models performed well, in overall the general
Japanese BERT model achieved the highest performance in
both datasets.

Discussion

Effect of Training Data
In the CR results, training only on the CR dataset achieved the
highest performance in the strict setting (Pearson correlation
of 0.904 and accuracy of 72%). In the relaxed setting, training
on the CRþ EMR achieved the best performance, Pearson
correlation score of 0.882, but training on only the CR
achieved the highest accuracy of 79%. We expected that
training on more data would improve the performance, but
training only on CR had best performance. Note that training
only on n2c2 or EMR datasets achieved average performance
in terms of Pearson correlation score (0.716 and 0.730 for the
strict setting; 0.705 and 0.749 for the relaxed setting).
Nevertheless, the classification accuracy is relatively low
(35 and 33% for the strict setting; 55 and 53% for the relaxed
setting). Although clinical Japanese BERT was trained on
clinical texts, it achieved low performance in the CR test
data. This could be attributed to the reason that case reports
and real hospital text data are different in terms of vocabu-
lary, abbreviations, linguistic patterns, and even sentence
length.

In the EMR results, training on a combination of all the
datasets achieved the highest performance (Pearson corre-
lation of 0.875 and accuracy of 81% for the strict setting;
Pearson correlation of 0.870 and accuracy of 86% in the
relaxed setting). The EMR training set was small and
therefore adding more data provided more training exam-
ples for our model hence improving the performance.
Although both EMR and n2c2 datasets are created from
real hospital documents, training on n2c2 dataset achieved
the lowest performance (Pearson correlation of 0.569 and
33% accuracy for the strict setting; Pearson correlation
0.558 and 63% accuracy for the relaxed setting). This could
be due to the reason that the n2c2 and our EMR datasets
were created from different types of clinical notes. Our EMR
dataset consisted of sentences from radiography notes and
progress notes, while the n2c2 dataset consisted of senten-
ces from other different types of clinical notes. Further, the

n2c2 dataset was translated from English to Japanese using
Google translate machine translation. The quality of ma-
chine translation was sufficient and most medical terms
were translated efficiently. Although our preliminary man-
ual check of the translated sentences looks sufficient, the
performance of the proposed method could be improved by
adopting better translation models. However, to compare
the precise relation between the machine translation quali-
ty and STS performance is one of the future works.

In the EMR results, we expected the clinical Japanese BERT
to achieve the best performance since it is trained on clinical
texts, but the general Japanese BERT attained the highest
performance. Although this could be surprising since domain
specific pretraining is expected to perform better in general,
the result suggests that semantic textual similarity relies
more on fundamental linguistic features. This finding there-
fore encourages clinical applications based on semantic
textual similarity, since widely available, general domain
BERT models would work well. Moreover, the high perfor-
mance of general Japanese BERT could also be due to the fact
that it is trained on a wide range of texts and therefore it
could generalize well.

Error Analysis
►Tables 3 and 4 showerror examples for the CR and EMR test
sets, respectively. In the CR results, example (a) in ►Table 3

shows an example of abbreviation expansion problem. Ab-
breviation expansion is a major problem even in other NLP
tasks, and in future there is a need for a precise method to
handle this problem. Example (b) is a case of language
variability, although the sentences are similar in meaning
the choice of words varies greatly. In example (c), the model
assigned a higher score to the sentence pair because actually
the sentences are highly similar and have only a minor
difference (“Yamada type 1 or type II” in the first sentence,
and “Yamada type III” in the second sentence). Although this
kind of difference is important in the clinical domain, in the
general English domain this sentence pair can be treated as
semantically equal. In example (d), the sentences are roughly
equivalent, and although our model assigned a score of 4, the
gold score should be 3.

In the EMR results, the sentence length varies greatly
from very short sentences (1 or 2 words). Example (a)
in ►Table 4 shows a typical example of short sentences
found in EMR notes. The EMR dataset sentence lengths have
a large difference, and our model was not able to correctly
classify sentence pairs with very short sentences. In sen-
tence pairs of examples (b) and (c), our model assigned a
lower score because although the sentences have a high
semantic similarity, the choice of words is quite different.
For example in (c), “almost no change” and “slightly de-
creased” have close meaning semantically. It is easy for
human beings to capture this kind of meaning but difficult
for machines to capture this kind of similarity. Sentence
pairs of examples (d) and (e) show a case of positive–
negative relationship. Our model was not able to capture
negation, and in future it is necessary to train our model to
identify this kind of relationship.

Methods of Information in Medicine Vol. 60 No. S1/2021 © 2021. The Author(s).

Japanese Clinical Semantic Textual Similarity Mutinda et al. e61



Conclusion

STS tasks have been widely studied especially in the general
English domain. However, only a few resources exist for STS

tasks in the clinical domain and languages other than English
such as Japanese. To bridge this gap, we created a publicly
available dataset for Japanese clinical STS. The dataset consists
ofapproximately4,000sentencepairsextracted fromJapanese

Table 3 Error analysis in the CR dataset
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case reports annotatedwith a semantic similarity score from0
(low semantic similarity) to 5 (high semantic similarity).

We used a BERT-based approach to capture semantic
similarity between clinical domain texts. In our experi-
ments we achieved a high Pearson correlation score be-
tween the gold scores and human scores (0.904 in the CR
dataset; 0.875 in the EMR dataset). In this study we also
compared the performance of the general and clinical
Japanese BERT models. Although both models achieved a
good performance, the general Japanese BERT achieved the
highest performance compared with the clinical Japanese
BERT in our clinical domain datasets. Though this could be
surprising because domain specific pretraining is known

to perform better in general, the results suggest that
semantic textual similarity relies more on fundamental
linguistic features. This finding particularly encourages
clinical applications based on semantic textual similarity,
since widely available general domain BERT models would
work well.
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