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Introduction

Megakaryocytes are highly specialized cells that assemble
and generate millions of platelets daily. In humans, mega-
karyocytes are found primarily in bonemarrow (less than 1%
of nucleated cells),1 while, in mice, megakaryocytes are also
present in the spleen and lungs.2 During maturation, mega-
karyocytes increase in size, replicate their DNA content
through endomitosis up to 128-fold, synthesize unique
granules, develop a highly invaginated membrane system,
and progressively expand their cytoplasmic content of cyto-
skeletal proteins.3 Mature megakaryocytes appear as giant
polyploid cells and undergo a complex transformation of the
cytoplasm into long branched proplatelets onwhich individ-
ual platelets are assembled.4

Megakaryocyte maturation and proplatelet formation
depend on dynamic and strictly regulated modifications in
the cytoskeleton. Two cytoskeletal polymer systems are
primarily present in megakaryocytes: the tubulin cytoskele-
ton (microtubules [MTs]) and the actin cytoskeleton (actin
filaments). Recent genetic analysis in patients and genetic

manipulations in mice have revealed the essential function
of new cytoskeleton regulators in megakaryocyte biology.5

Research has focused on several classes of regulatory pro-
teins that control the architecture of the networks formed by
cytoskeletal polymers, including nucleation-promoting fac-
tors (NPFs), which initiate filament formation; capping pro-
teins, which terminate filament growth; depolymerizing
factors and severing factors, which disassemble filaments;
crosslinkers and stabilizing proteins, which organize and
reinforce higher order network structures; and motor pro-
teins. Understanding how these cytoskeleton regulators
control megakaryocyte biology and platelet production is
essential for defining the mechanisms of thrombocytopenia
and developing new in vitro megakaryocyte models for
studying platelet-associated disorders. In this review, we
discuss state of the art on the role of cytoskeletal proteins
and regulatory molecules in the progressive steps of mega-
karyocyte maturation and platelet biogenesis. In particular,
we will focus on the role of cytoskeletal proteins in (1)
megakaryocyte maturation, (2) migration in the bone mar-
row environment, (3) positioning in the vascular niche and
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Abstract Thrombopoiesis governs the formation of blood platelets in bone marrow by convert-
ing megakaryocytes into long, branched proplatelets on which individual platelets are
assembled. The megakaryocyte cytoskeleton responds to multiple microenvironmen-
tal cues, including chemical and mechanical stimuli, sustaining the platelet shedding.
During the megakaryocyte’s life cycle, cytoskeletal networks organize cell shape and
content, connect them physically and biochemically to the bone marrow vascular
niche, and enable the release of platelets into the bloodstream.While the basic building
blocks of the cytoskeleton have been studied extensively, new sets of cytoskeleton
regulators have emerged as critical components of the dynamic protein network that
supports platelet production. Understanding how the interaction of individual mole-
cules of the cytoskeleton governs megakaryocyte behavior is essential to improve
knowledge of platelet biogenesis and develop new therapeutic strategies for inherited
thrombocytopenias caused by alterations in the cytoskeletal genes.
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podosome formation, and (4) proplatelet extension and
platelet biogenesis.

Megakaryocyte Maturation
Megakaryopoiesis is the process by which hematopoietic
stem cells (HSCs) differentiate toward the myeloid lineage to
generate mature megakaryocytes.6

Thrombopoietin (TPO), synthesized by the liver, is the
primary regulator of megakaryocyte progenitor (MKP) ex-
pansion and differentiation.7 TPO stimulates megakaryocyte
growth and platelet production by binding the myeloprolif-
erative leukemia protein receptor on HSC and megakaryo-
cyte surface, leading to Janus activated kinase and signal
transducer and activator of transcription signaling pathway
activation. TPO sustains megakaryocyte maturation in con-
junction with other essential cytokines, including interleu-
kin-3 (IL-3), stem cell factor, IL-6, and IL-11.8 Pluripotent
HSCs generate megakaryocytes through sequential differen-
tiation into a hierarchical series of progenitor cells: myeloid
progenitors, commonmegakaryocyte–erythroid progenitors
(MEPs), and MKPs that mature into megakaryocytes releas-
ing platelets.9 However, recent studies have suggested that
megakaryocytes can differentiate directly from lineage-bi-
ased HSCs or multipotent progenitors, bypassing the
MEP.10–14

During megakaryocyte maturation, a complex interplay
between the cytoskeleton and membranes is required to
build up a characteristic structure, called demarcationmem-
brane system (DMS), that provides the intracellular mem-
brane reservoir required for successful elongation of
proplatelets and platelet production. The sequential steps
of DMS biogenesis and its ultrastructural properties have
been described by Eckly and colleagues.15 Despite this
knowledge, the molecular mechanisms underlying DMS
onset and the role of DMS-associated cytoskeleton are not
fully understood. The glycoprotein Ib-IX-V (GPIb-IX-V) com-
plex,16 which labels nascent DMS, and the actin cytoskele-
ton17 are critically involved in the formation of DMS during
megakaryopoiesis. The GPIb-IX-V complex is the receptor for
the vonWillebrand factor on the platelet surface and initiates
platelet–subendothelium interactions.16 However, mouse
megakaryocytes lacking GPIbα or GPIbβ display an abnormal
expansion of the intracellular membrane network of the
DMS, suggesting that the entire complex is required for the
DMS formation in maturing megakaryocytes.16,18,19 Ber-
nard–Soulier syndrome (BSS), a rare bleeding disorder char-
acterized by defects of the GPIb-IX-V complex, presents
macrothrombocytopenia and prolonged bleeding. Patients
with biallelic mutations always develop a severe form with
significantly reduced platelet counts, giant platelets, and
recurrent episodes of spontaneous bleeding. In contrast,
subjects with the monoallelic mutation have milder pheno-
types.18,19 Megakaryocytes derived from Bernard–Soulier
patients show abnormal proplatelet formation in vitro.20,21

The exact role of the GPIb-IX-Vcomplex inmegakaryocyte
maturation and platelet biogenesis is still unknown. One
hypothesis is that it may determine the structure of the
submembranous actin network through its binding to the

intracellular filamin-A (Fln-A).22 Fln-A is a multidomain
cytoskeletal protein, present in megakaryocytes and plate-
lets, that stabilizes platelet membranes subjected to shear
stress and promotes platelet adhesion by linking membrane
glycoproteins to the actin cytoskeleton.23,24 Filaminopathies
A, caused by mutations in the X-linked FLNA gene, are
responsible for a broad spectrum of rare diseases, including
two main phenotypes, the X-linked dominant form of peri-
ventricular nodular heterotopia and the otopalatodigital
syndrome spectrum of disorders.25,26 FLNA mutations im-
pact megakaryocyte function, determining the release of
giant platelets rapidly removed from the circulation by
macrophages.24,27,28 In addition, platelets show a decreased
ability to aggregate and reduced dense granule secretion. In
megakaryocytes/platelets, Fln-A can bind the cytoplasmic
tail of the β3 subunit and negatively regulate activation of the
αIIbβ3 integrin. A dysregulated Fln-A/αIIbβ3 interaction in
the downregulation of RhoA activity has been proposed as a
mechanism of macrothrombocytopenia.29

Bin–Amphiphysin–Rvs (BAR)/Fes-CIP4 homology BAR (F-
BAR) proteins generate tubular membrane invaginations
reminiscent of megakaryocyte DMS. PACSIN2 (also called
Syndapin 2) is the only BAR/F-BAR protein reported in
megakaryocytes/platelets to associate with the cytoskeletal
and scaffold protein Fln-A. Begonja et al showed that in
mouse megakaryocytes, Fln-A/PACSIN2 interaction is re-
quired to regulate membrane tubulation, likely contributing
to DMS formation.30 Consistently, mice lacking the F-BAR-
containing adaptor protein CIP4 (Cdc42 interacting protein
4) develop mild thrombocytopenia, and CIP4 null megakar-
yocytes show abnormal DMS, a more rigid membrane, and
altered proplatelet formation.31

Association of F (filamentous) actin with the DMS is an
established event in the maturation of DMS before propla-
telet emission.17 Actin polymerization is powered by the
actin-related protein 2/3 (Arp2/3). The Arp2/3 complex
comprises seven evolutionarily conserved subunits, which
serve as a nucleation core for de novo actin polymerization.
On its own, the Arp2/3 complex displays low intrinsic actin
nucleation activity and needs to be activated byNPFs, such as
Wiskott–Aldrich syndrome (WAS) protein (WASp) and SCAR
(suppressor of the cAMP receptor)/WAVE (WASp family
verprolin homologous) proteins. Mutations in the WASp
gene cause WAS, a rare X-linked immunodeficiency charac-
terized by eczema, thrombocytopenia, and severe, often
recurrent, infections. Microthrombocytopenia is the most
common finding at diagnosis, although in rare cases; WAS
manifests with macrothrombocytopenia.32 More than 300
gene mutations have been identified in the WASp gene,
leading to impaired WASp protein configuration. Because
of the wide range of genetic mutations, the disease itself has
phenotypic variability ranging from severe to mild. Mecha-
nisms of thrombocytopenia remain controversial. Various
hypotheses on megakaryocyte dysfunctions or abnormal
clearance of defective platelets in the periphery have been
reported in patients and mouse models that recapitulate the
disease.33–35 Although WASp-deficient megakaryocytes can
produce proplatelets and platelets in vitro,36 defective
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platelet production and premature release of platelets into
the bone marrow interstitium have been reported.37,38

The study of Schulze et al, using both mouse models and
cultured megakaryocytes, revealed that during DMS biogen-
esis, plasmamembrane invaginations are driven bymechan-
ical forces generated through F-actin assembly.39 The
authors demonstrated that the protrusive force for internal
DMS migration relies on actin fibers that assemble at the
DMS cytoplasmic face in response to phosphatidylinositol
4,5-bisphosphate (PtdIns(4,5)P2) accumulation and stimu-
lation of the actin-nucleating activity of the Arp2/3 complex
byWASp. PtdIns(4,5)P2 is a plasmamembrane phospholipid
with a recognized role in membrane motility functions,
including ruffle formation, endocytosis, membrane traffic,
and phagocytosis.39 In megakaryocytes, PtdIns(4,5)P2 is
generated through the enzymatic activity of the lipid kinase
PI-5-P-4-kinase α (PIP4Kα) to promote actin polymerization
by activating Rho-like GTPases and WASp.39 Megakaryocyte
cytoskeleton/membrane dynamics are also regulated by

phosphatidylinositol 3 monophosphate (PtdIns3P), and its
implication in platelet generation/function has been recently
reviewed.40

Several actin-binding proteins are emerging as critical
regulators of megakaryocyte function,41 and most of them
are involved in the complex generation of the DMS
(►Fig. 1A). α-Actinin, a member of the actin-crosslinking
protein superfamily, contributes to this process by cross-
linking actin filaments into bundles.42 Mutations in the
ACTN1 gene, encoding for α-actinin, cause macrothrombo-
cytopenia and bleeding tendency.42–44 However, 15 rare
monoallelic ACTN1 variants have been identified in patients
characterized by thrombocytopenia with normal platelet
size in most cases.45 In vitro transduction of mouse fetal
liver-derived megakaryocytes with disease-associated
ACTN1 variants leads to the disruption of the actin-based
cytoskeletal structure, resulting in abnormal megakaryocyte
cytoplasm organization and defective proplatelet forma-
tion.42,44 Tropomodulin3 (Tmod3), the unique form of

Fig. 1 List of cytoskeletal proteins and regulators that assist megakaryocyte in the steps toward platelet production. (A) Several cytoskeletal,
signaling, and receptor proteins are required to develop the extensive membrane network, known as demarcation membrane system (DMS),
during megakaryocyte maturation. (B) Terminally differentiated megakaryocytes migrate and intimately associate with the sinusoidal
endothelium of the bone marrow through podosome formation. The coordination of these steps depends on several receptors and actin-
interacting proteins. (C) Following extensive cytoskeletal remodeling, fully mature megakaryocytes extend cytoplasmic projections called
proplatelets into the vessel lumen, where platelets are released under shear forces produced by the circulating blood. Coordination of
microtubules or actin dynamics, motor protein functions, GTPase signaling pathways, myosin II-A, and spectrin activity is essential for
proplatelet formation and the release of functional platelets.
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tropomodulin expressed in megakaryocytes, is detected in
the pointed end of actin filament caps and binds to tropo-
myosins to promote actin polymerization and stability.
Mouse fetal liver Tmod3�/� megakaryocytes show an im-
pairment in cytoplasmic morphogenesis associated with
insufficient DMS formation, suggesting an essential role of
Tmod3 in the regulation of F-actin organization.46 F-actin-
dependent DMS formation requires the activation of the
guanosine triphosphatase cell division control protein 42
homolog (Cdc42) and its p21-activated kinase (Pak1/2/3)
effectors. Pak1/2/3 are serine/threonine kinases that support
cell contractility and survival.47 Upon activation by the
GTPases, Rac1 and Cdc42, Paks phosphorylate dozens of
effector proteins to regulate the mitogen-activated protein
kinase signaling and cytoskeletal remodeling. Pharmacolog-
ical inhibition of Cdc42 and Pak1/2/3 activity promotes the
destruction of the DMS and inhibits proplatelet formation.17

Genetic deletion of Pak2 inmouse bonemarrow is associated
with macrothrombocytopenia, decreased platelet half-life,
increased megakaryocyte ploidy, and altered microfilament
and MT proplatelet structures.48 In addition to Paks, Cdc42
regulates the development of the DMS through activated
neural-WASp (N-WASp). Chemical knock-down of both
Cdc42 and N-WASp in human megakaryocytes determined
a structural defect in the DMS and a marked decrease in
proplatelet formation.49

Megakaryocyte Migration in the Bone Marrow
In the bone marrow, megakaryocytes are closely associated
with sinusoids.50,51 Megakaryocyte interaction with the
microenvironment is essential to guide their maturational
chemotaxis toward the vascular niche. Gradients of chemo-
tactic stromal cell-derived factor-1α (SDF-1α) and fibroblast
growth factor-4 attract megakaryocytes to sinusoidal blood
vessels.52,53 Although megakaryocytes do not migrate large
distances within the bone marrow,51 several proteins are
involved in the membrane–cytoskeleton rearrangements
during megakaryocyte migration (►Fig. 1B).54,55 Dynamins
(DMNs) are mechanochemical enzymes that participate in
membrane dynamics such as cytokinesis, budding of trans-
port vesicles, phagocytosis, and cell motility.56 Whereas
DMN2 is ubiquitous, both mouse and human megakaryo-
cytes also express DMN3.57 DMN3 protein is involved in cell-
receptor trafficking duringmegakaryocyte development and
regulates cytoskeleton/membrane dynamics in SDF-1α-in-
duced migration.54,55

Megakaryocyte migration depends on the interaction of
nonmusclemyosin II (NMII) with the actin cytoskeleton. Two
types of NMII are expressed in megakaryocytes: nonmuscle
myosin heavy chain II-A (NMII-A, MYH9) and nonmuscle
myosin heavy chain II-B (NMII-B, MYH10).58 NMII-B is
expressed in immature megakaryocytes, where it accumu-
lates on the contractile ring in endomitosis transition. NMII-
B expression is downregulated by Runt-related transcription
factor 1 (RUNX1) through MHY10 gene silencing during
megakaryocyte polyploidization. This process is essential
for switching from mitosis to endomitosis to increase the
ploidy level during megakaryocyte differentiation.59,60

NMII-A is required for maintaining cell shape and organizing
cell cytoplasm. Several studies using megakaryocyte-re-
stricted myosin IIA–deficient mice have reported that
NMII-A is involved in the earlier distribution of organelles
withinmegakaryocytes through amechanism that promotes
organelle traveling and tethering onto F-actin cytoskeleton
tracks.61,62 In addition, inhibition of NMII-A ATPase activity
suppresses the SDF-1α-driven migration of the megakaryo-
blastic Dami cell line.53 Pal et al, using both in vitro assays
andmousemodels withmutated NMII-A, demonstrated that
different NMII-A mutations impair megakaryocyte chemo-
taxis by multiple mechanisms and disrupt megakaryocyte
migration toward the vasculature in vivo.63

Vascular Niche Positioning and Podosomes Formation
Megakaryocyte interactions with the extracellular environ-
ment and positioning in the vascular niche are essential to
expand proplatelets and release platelets into the blood-
stream. Podosomes are F-actin-rich matrix contacts driven
by actin polymerization, initially described in osteoclasts
and monocytic cells.64 These structures are abundantly
present in mouse megakaryocytes in adhesion to extracellu-
lar matrices or stimulated with cytokines (e.g., transforming
growth factor-β or SDF-1α).65 Although they appear to be
individual structures, podosomes are linked to each other in
a network on the underlying cytoskeleton, generating super-
structures that function as a large unit. The proposed func-
tion in megakaryocytes is to sustain extracellular matrix
degradation required for cell migration and penetration
across the basement membrane of sinusoidal vessels.66

Recently, F-actin-based podosome-like structures, called in
vivo-megakaryocyte podosomes, have been recognized as a
crucial regulatory component in the transendothelial pas-
sage of megakaryocyte-derived processes in the native bone
marrow environment.67

Podosomes’ stability is strongly dependent on WASp-
Arp2/3-mediated actin polymerization for proper forma-
tion.66 Cortactin (Cttn) is an additional core protein of the
podosome structure.66,68 Cttn is an F-actin-binding protein
that interacts with the actin NPF, the Arp2/3 complex, and
stabilizes dynamic branched actin networks. In contrast with
Cttn, hematopoietic cell-specific lyn substrate-1 (HS1) is
expressed only in hematopoietic lineages. Generation of
Cttn/HS1 double knockout mice revealed that these proteins
are dispensable for proper podosome assembly, at least in
megakaryocytes.69

The structure and dynamics of actin filaments are regu-
lated by three phylogenetically distinct classes of actin-
binding proteins: ADF/cofilins, Abp1/drebrins, and twinfi-
lins. Members of the ADF/cofilins are small actin-binding
proteins composed of a single actin-depolymerizing factor
homology (ADF-H) domain. They bind both actin monomers
and filaments and promote rapid filament turnover by
depolymerizing/fragmenting actin filaments. Abp1/drebrins
are involved in endocytosis, interact only with actin fila-
ments, and do not promote filament depolymerization or
fragmentation. Twinfilins only bind actin monomers and
localize these monomers, in their “inactive” ADP-form, to
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the sites of rapid actin assembly in cells.70 Becker et al
dissected the functions of twinfilins and ADF/cofilin1 in
podosome formation in transgenic mouse models. They
found a mild reduction in podosome formation in cofilin 1
knockout megakaryocytes adherent to a collagen substrate,
whereas twinfilin 1 knockout megakaryocytes seemed to
behave mostly as control cells. Double knockout megakar-
yocytes, lacking both cofilin 1 and twinfilin 1, displayed a
dramatic impairment in podosome-like assembly, revealing
that members of distinct classes of actin-binding proteins
have synergistic effects in the regulation of actin dynamics
and podosome formation.71

A highly conserved component of the cytoskeleton that
cooperateswith cofilin in enhancing F-actin disassembly and
severing of actin filaments is actin interacting protein 1
(Aip1). Generation of mice with deficiency in the WD40
repeat protein 1 (Wdr1), the mammalian homolog of Aip1,
resulted in embryonic lethality, macrothrombocytopenia,
and autoinflammatory disease, suggesting that Aip1/cofilin
interaction is also essential for megakaryocyte maturation
and platelet release.72 Consistently,WDR1-related thrombo-
cytopenia was reported in two siblings carrying a WDR1
biallelic mutation associatedwith autoinflammation, immu-
nodeficiency, and thrombocytopenia.73

Additional regulators of actin dynamics during podosome
formation include phospholipase D (PLD) and adhesion and
degranulation promoting adaptor protein (ADAP). Studies in
PLD-deficient megakaryocytes revealed an abnormal actin
rearrangement associated with a complete absence of podo-
some formation.74 In contrast, megakaryocytes from ADAP
knockout mice display a significant reduction in the number
of actin-rich podosomes, altered morphology with signs of
fragmentation, and ectopic release of platelet-like particles
into the bone marrow compartment.75 Mutations in the
human FYB gene, encoding for ADAP, results in congenital
autosomal recessive small-platelet thrombocytopenia
(CARST), a novel autosomal recessive bleeding disorder
with small-platelet thrombocytopenia.76 So far, two muta-
tions have been identified in the FYB gene (point mutation
393G>A:W131X; 2-bp deletion 1385_1386delAT:Y462),
which result in premature stop codons that lead to a trun-
cated gene product or less functional ADAP protein.75,77

Integrins in megakaryocyte adhesion andmigration: Integ-
rins bind extracellular matrix components and associate
with the cell cytoskeleton through various cytoskeletal linker
proteins to mechanically connect intracellular and extracel-
lular structures (►Fig. 1B).78 Megakaryocytes express abun-
dant levels of integrins essential for their adhesion to
proteins of the extracellular matrix in the bone marrow,
including collagens, fibronectins, laminins, perlecan, or
nidogen.79,80 α2β1 integrin and glycoprotein VI are the
primary collagen receptors expressed on megakaryocytes.81

In particular, megakaryocyte contact with type I collagen
fibrils inducesmyosin light chain-2 (MLC-2) phosphorylation
through the α2β1 integrin-dependent Rho-ROCK (Rho-asso-
ciated protein kinase) pathway to regulate the cytoskeleton
contractility, cell migration, and platelet release.82–85 While,
megakaryocyte interactions with fibrinogen, vitronectin,

and fibronectin are mediated by αIIbβ3 integrin, which has
a pivotal role regulating F-actin cytoskeleton during platelet
biogenesis mainly through Fln-A interaction.29,79 Mutations
in the ITGA2B and ITGB3 genes cause Glanzmann thrombas-
thenia (GT), a bleeding disorder due to quantitative or
qualitative defects of αIIbβ3 yielding reduced platelet aggre-
gation while maintaining normal platelet count and size.86

However, patients with rare autosomal dominant variants of
GT with reduced expression and constitutive activation of
αIIbβ386–89 present macrothrombocytopenia. The R995Q
and R995W mutations in the ITGA2B gene have been
reported in GT patients with macrothrombocytopenia.90,91

Abnormal proplatelet formation has been detected in mega-
karyocytes derived from patients with a heterozygous mu-
tation (2134þ1 G>C) of the ITGB3 gene92 as well as
compound heterozygosity for two ITGB3 variants.93

Intracellular integrin-associated proteins, such as talin1
and kindlin3, regulate the activation and function of α2β1
and αIIbβ3 integrins during megakaryocyte adhesion. Both
kindlin3 and talin1 bind to the cytoplasmic tails of integrins,
particularly the β3 subunit of αIIbβ3 integrin, modulating
cell spreading or migration.94 However,
megakaryocyte/platelet-specific talin1-deficient mice have
unaltered platelet counts and megakaryocyte localization,
excluding a critical role of talin1 inmegakaryocytemigration
and platelet formation.51,95–97 On the contrary, talin1-defi-
cient platelets display a severe hemostatic defect due to
impaired αIIbβ3 activation, platelet aggregation, and throm-
bus formation.97 To date, specific effects of kindlin-3 on
megakaryocyte function have not been reported. Genetic
variants of FERMT3 encoding kindlin-3 cause leukocyte
adhesion deficiency III (LAD-III) syndrome.98 Platelet counts
in patients with LAD-III syndrome are normal; however,
platelets fail to aggregate, which translates into markedly
reduced thrombus formation.99,100 This evidence demon-
strates that alterations in a cytoskeletal protein may impact
platelet and megakaryocyte functions to different extents.

Proplatelet Extension and Platelet Biogenesis
Proplatelet formation starts with the development and
extension of thick pseudopods with an average diameter
of 2 to 4 μm that are elongated and expanded through
repeated cytoskeleton-dependent bending and bifurcation
processes, leading to the amplification of these free pro-
platelet ends. Additional proplatelets can be generated near
the primary site of proplatelet formation, ensuring the
complete conversion of the megakaryocyte cytoplasm into
a complex and extended network of interconnected pro-
platelets.101 The major components of proplatelets are MTs
(►Fig. 1C).102,103 Three significant factors may contribute to
the heterogeneity of MT properties: (1) composition of the
α- and β-tubulin gene-encoded isotypes that are incorpo-
rated into MTs; (2) posttranslational modifications of tubu-
lin, and (3) interactions with diverse MT-interacting
proteins (MIPs). Humans encode at least seven α and
eight β tubulin isotypes with distinct expression profiles
according to cell identity and stage of development.104 A
hematopoietic-specific tubulin isotype, tubulin β1 class VI
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(β1 tubulin), is expressed only in mature megakaryocytes
and represents 90% of the total β-tubulin pool in mature
platelets.102,105,106 Mutations in the human gene encoding
for this tubulin isotype (TUBB1) lead to TUBB1-related
thrombocytopenia, primarily due to defective proplatelet
formation and abnormal protrusion-like platelet re-
lease.107–109 The first functional TUBB1 variant reported
in humans was the double nucleotide substitution
c.128_129delAGinsCC predicting p.Gln43Pro in β1-tubulin
chain. This common variant is associated with a population
of enlarged round platelets with defective marginal bands
and abnormally distributed cytoplasmic organelles.110 In a
collection of patients with monoallelic BSS, an additional
common variant TUBB1 c.920G>A predicting p.Arg307His
in the β1-tubulin chain was associated with a lower platelet
count.111 The first reported rare TUBB1 variant in humans
linked to thrombocytopenia was a heterozygous c.952C> T
predicting a p.Arg318Trp substitution in the tubulin β1
chain. This mutation was identified in a patient with
macrothrombocytopenia (platelet count: 40–60�109/L)
but with no bleeding and normal platelet functional res-
ponses.108 A second rare TUBB1 c.779T>C variant predicting
p.Phe260Ser was identified in a further pedigree with mild
macrothrombocytopenia (platelet counts: 97–125�109/L)
but no abnormal bleeding.105,107 In recent studies, rare mis-
sense or high impact TUBB1 variants have been identified in
thrombocytopenic patients using rapid throughput sequenc-
ing,112,113 whereas novel gene mutations have been detected
in patients with thyroid dysgenesis.114

In addition to β-tubulin, expression of α1 isotype
increases early during megakaryocyte differentiation. It
remains stable until full maturation, while expressions of
α4 and α8 transcripts are upregulated at the stage preceding
proplatelet extension andmarginal band formation.115Mod-
erate macrothrombocytopenia is present in human individ-
uals with naturally occurring mutations of the TUBA4A
gene116 and in a mouse strain with a missense mutation in
the Tuba4a gene, suggesting a crucial role of α4A-tubulin in
late stages of megakaryocyte maturation.116

Studies in mouse megakaryocytes have reported that in
addition to tubulin isotype composition, posttranslational
modification patterns of MTs are required for proper platelet
release.115Van Dijk et al disclosed that β1 tubulin acetylation
occurs along the MTs colonizing the extending proplatelet.
Its steady-state level increases with elongation kinetics,
suggesting that acetylation is required for proplatelet elon-
gation. Polyglutamylation of MTs marks the most dynamic
growing region of proplatelets, the swellings, and severed
cytoplasts.115 MTs assume several functions during propla-
telet formation: (1) they generate the driving force of pro-
platelet elongation; (2) they mediate the transport of
granules and organelles into nascent platelets; and (3) they
are arranged into a submembranous structure, the marginal
band, which encircles the nascent platelets.

MTs drive proplatelet initiation and elongation: proplatelet
formation is characterized by repetitive phases of extension
(elongation), pause, and retraction of proplatelet shafts.117

Proplatelets elongate at an average rate of 0.85 μm/min in an

MT-dependent process. The mechanisms driving proplatelet
elongation are the continuous assembly and sliding of
MTs.117,118 However, treatment with inhibitors of MT poly-
merization does not modify the rate of proplatelet shaft
elongation, suggesting that the sliding of overlappingMTs is a
vital component of proplatelet elongation.118 Further, dy-
namic bending and branching processes bifurcate the shaft
multiple times and expand the number of free proplatelet
ends. In the proplatelet ends, a single MT rolls up into a
circumferential coil and maintains the discoid shape of
nascent platelets.117

MT sliding and organelles transport in proplatelets: MT
sliding and transport of organelles and granules into propla-
telets are mediated by two cytoplasmic motor proteins:
dynein and kinesin.117,119,120 Dynein is primarily responsi-
ble for MTs sliding in synergy with the cofactor dynactin. At
the same time, kinesin localizeswith granules and organelles
within the proplatelets and provides the motile force that
moves cargo over MT into the proplatelet. Vacuolar protein
sorting-associated protein 33b (VPS33B) and VPS33B inter-
acting protein (VIPAS39 or VIPAR) are two vesicle-mediated
protein-sorting proteins that form a functional complex
involved in α-granule trafficking and biogenesis. A recent
study has identified two novel interactors of this complex, α-
tubulin and Sec22 vesicle trafficking protein homologue B
(SEC22B). This demonstrated that VPS33B expression is
required for the transportation of the von Willebrand factor
by SEC22B and the α-granule, from megakaryocytes to
proplatelets.121,122 VPS33B-deficient mouse megakaryo-
cytes have normal megakaryocyte maturation and propla-
telet formation.123 Simultaneously, mutations in human
VPS33B and VIPAS39 genes cause arthrogryposis, renal dys-
function, and cholestasis syndrome, a rare disorder associat-
ed with several platelet abnormalities.124 Affected patients
have variable platelet phenotypes: some cases present
thrombocytopenia, and others have normal platelet counts
but abnormal platelet function.124

Regulators of MT assembly and stability: MT dynamics and
stability are maintained by a highly regulated tubulin orga-
nization as confirmed by studies in primary cultures of
mouse megakaryocytes treated with trastuzumab emtan-
sine (T-DM1).125 Thon et al demonstrated that T-DM1 is
taken up bymousemegakaryocytes, inhibits megakaryocyte
differentiation, and disrupts proplatelet formation by induc-
ing abnormal tubulin organization suppressing MT dynamic
instability.

RhoGTPases, such as RhoA, Rac1, and Cdc42, are supposed
to regulate tubulin stabilization and assembly in MTs during
proplatelet formation.126,127 Beyond dynein/dynactin and
kinesin, various MIPs are supposed to govern MT assembly
into a characteristic circular marginal band. Some MIPs are
localized at the ends of growing MTs and are called plus-end
tracking proteins (þTIPS). Among them, adenomatous
polyposis coli (APC) promotes MT polymerization and pro-
tects MTs from shrinking. Indeed, APC deficiency in the
megakaryocyte lineage induces an increased cell capacity
to extend proplatelets.128 MARCKS is a protein kinase C
(PKC) substrate that, when dephosphorylated, binds to and
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sequesters PI-4,5-P2 at the membrane. Upon phosphoryla-
tion, MARCKS relocates from the plasma membrane to
internal demarcation membranes. Conversely, dephosphor-
ylation of MARCKS results in its relocation to the plasma
membrane and restoration of PI-4,5-P2 binding.Machlus and
colleagues demonstrated that inhibition of MARCKS in wild-
type mouse megakaryocytes or deletion in MARCKS knock-
out mice significantly decreased proplatelet formation. This
study concluded that MARCKS acts as a “molecular switch”
through regulating PI-4,5-P2 signaling to modulate process-
es like proplatelet extension (MT-driven) versus proplatelet
branching (actin polymerization-driven).129

An intriguing aspect is the in vivo contribution of tubulin
cytoskeleton to platelet release, given that most of the data
on the role of MT assembly and dynamics during proplatelet
formation have been generated using in vitro culture con-
ditions. A recent study reported that MT rearrangements
visualized in megakaryocytes in the bone marrow of living
mice differ from the previously described mechanism in
cultured megakaryocytes.130 In β1-tubulin-deficient mice,
extending proplatelets’ morphology and elongation speed,
are normal despite themoderate thrombocytopenia suggest-
ing that proplatelet extension generated in vivo is less MT-
dependent than the in vitro one.130 Thus, the development
and application of new in vivo imaging systems will clarify
the actual contribution of individual cytoskeletal compo-
nents to platelet generation in the native and complex bone
marrow environment.

Actin cytoskeleton mediates proplatelet bending/branching:
Differently from tubulins, the role of actin in proplatelet
formation remains unclear. Time-lapsed microscopy analysis
of proplatelet formation has revealed that proplatelet ends are
amplified in an elaborated mechanism of bending/branching
and that F-actin ispresent throughoutproplatelets forming the
assemblies required to bend and bifurcate proplatelets.101

Inhibition of actin polymerization leads to the formation of
abnormal, nonbranched proplatelets.101 Consistently, a mis-
sense mutation in the β-actin protein has been linked to
thrombocytopenia, immunodeficiency, and mental retarda-
tion (β-actin-related thrombocytopenia). This mutation leads
to substituting the glutamic acid residue at position 364 with
lysine (E364K) in an essential profilin-binding domain and
other actin-regulatory molecules. At the same time, the poly-
merization of actin is preserved.131

Despite these pieces of evidence, the role actin plays in
proplatelet formation remains unknown. The hypothesis is
that actin polymerization cooperates with NMII-A to guaran-
tee the generation of contraction forces required for the
bending and branching processes.62,132 An essential compo-
nent in actinfilament branching is theArp2/3 complex,which,
together with the ADF/cofilin family, is a critical regulator of
actin polymerization as described above. The deletion of the
Arp2/3 complex in the megakaryocyte lineage in mice causes
microthrombocytopenia and premature platelet release in the
bone marrow compartment.133 Accordingly, human muta-
tions in one of the Arp2/3 complex components, actin-related
protein 2/3 complex subunit 1B (ARPC1B), result in complete
loss of ARPC1B protein and microthrombocytopenia.134

Bender and colleagues were the first to dissect the role of
the ADF/cofilin family in platelet biogenesis. There are three
highly homologous isoforms of the ADF/cofilin family: ADF,
m-cofilin (muscle cofilin), and n-cofilin-1 (nonmuscle cofi-
lin). ADF is expressed in epithelial cells, m-cofilin is restrict-
ed to muscle cells, while n-cofilin expression is ubiquitous.
Genetic deletion of ADF in mice has no effects on platelet
counts and size, whereas mice lacking n-cofilin display
moderately reduced platelet counts and increased platelet
size.135 Double-mutant mice, lacking both ADF and n-cofilin
in megakaryocytes, show platelet counts dramatically re-
duced to less than 5% of control mice and variable size of
circulating platelets, including giant and microparticle-like
platelets.135

The role of the actin-bundling protein L-plastin has
emerged in platelet biogenesis. Overexpression and knock-
down studies showed that L-plastin promotes MKP migra-
tion while negatively regulating proplatelet formation.136

Finally, other examples of actin regulators during proplatelet
formation include phosphoinositide-dependent protein ki-
nase-1 (PDK1)137 and PKCα.132

Actin filaments act as cellular tracks for the movement of
myosin molecules to generate contractile forces. Actomyosin
fibers are critical for proplatelet formation, although the
mechanisms are not entirely understood. Mutations in the
human MYH9 gene encoding NM-IIA, which cause MYH9-
related diseases (MYH9-RD), or deletion of theMyh9 gene in
mice induces thrombocytopenia.61,138 May–Hegglin anom-
aly is one of the spectra of MYH9-related disorders that
includes Sebastian, Epstein, and Fechtner syndromes, all
characterized by macrothrombocytopenia, inclusions of
NM-IIA in leukocytes, and a variable risk of developing
kidney damage, sensorineural deafness, presenile cataracts,
and liver enzyme abnormalities.139 The presence and sever-
ity of spontaneous bleeding tendency correlate with
the degree of thrombocytopenia. Most affected individuals
have no spontaneous bleeding or only easy bruising. Around
30% have spontaneous mucocutaneous bleeding, including
epistaxis, gum bleeding, or menorrhagia, while life-threat-
ening bleeding is rare.140 In general, affected individuals
with pathogenic variants involving the head domain of the
NM-IIA protein have more severe thrombocytopenia than
those with pathogenic variants affecting the tail domain.140

Surprisingly, myosin deficiency or inhibition of its activity
has been reported to increase the number of cells extending
proplatelets in culture.61,141,142Activation of NMII-A activity
through the Rho/ROCK/MLC-2 pathway is supposed to in-
hibit proplatelets in vitro.142 In living mice, NMII-A has
been shown to regulate the protrusive and retraction forces
during proplatelet extension.130 Several mechanisms, in-
cluding increased cell death, defective proplatelet forma-
tion, and premature platelet release in the bone marrow
compartment, are supposed to contribute to macrothrom-
bocytopenia in MYH9-RD patients.143,144 In this regard, the
presence of NM-IIA mutations in both human and mouse
megakaryocytes is a requisite for altered proplatelet forma-
tion. Megakaryocytes differentiated in vitro from MYH9-RD
patients form fewer and defective proplatelets due to an
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excess of actomyosin contractility.143,145 Knock-in mice
with different Myh9 mutations recapitulate MYH9-RD
thrombocytopenia and megakaryocyte isolated from these
mice presented defective proplatelet formation in vitro.146

Nevertheless, megakaryocytes in the marrow of MYH9
patients appear to develop normally and are slightly
elevated in number.147 Thus, whether additional steps of

megakaryopoiesis are affected in MYH9-RD patients
remains to be determined.

The presence of a spectrin-basedmembrane skeleton also
supports actomyosin contractility. Spectrin tetramers in
megakaryocytes are composed of nonerythroid (αII and
βII) and erythroid (αI and βI) subunits and play a significant
role during proplatelet elaboration and proplatelet–

Table 1 Summary of primary mutations in megakaryocyte-cytoskeletal genes associated with thrombocytopenia

Inherited thrombocytopenia/disease Mutated cytoskeletal protein (gene) Megakaryocyte/platelet defects

Bernard–Soulier syndrome GPIb/IX/V complex
(GP1BA, GP1BB, and
GP9 genes)

Mild thrombocytopenia and prolonged
bleeding time.Megakaryocytes frompatients
display an abnormal development of the DMS
and defective proplatelet formation.

Filaminopathies Filamin A (FLNA gene) Macrothrombocytopenia due to aberrant
proplatelet formation yielding giant platelets,
with enlarged and often absent granules, in
reduced number.

Wiskott–Aldrich syndrome WASp (WAS gene) Microthrombocytopenia due to megakaryo-
cyte dysfunction and abnormal clearance of
defective platelets in the periphery. Abnor-
mal megakaryocyte migration, podosome
formation, and ectopic platelet release in the
bone marrow have been reported.

Autoinflammatory periodic fever,
immunodeficiency, and
thrombocytopenia (PFIT)

WDR1 (WDR1 gene) Thrombocytopenia. No functional studies
have been performed with patient-derived
megakaryocytes.

ACTN1-related thrombocytopenia α-Actinin-1 (ACTN1 gene) Mild macrothrombocytopenia with low risk of
bleeding. Abnormal F-actin organization in
megakaryocyte cytoplasm and defective
proplatelet formation.

Congenital autosomal recessive
small-platelet thrombocytopenia
(CARST)

ADAP (FYB gene) Microthrombocytopenia characterized by a
reduced platelet life span, decreased per-
centage of mature megakaryocytes, and ec-
topic release of proplatelet-like particles in
the bone marrow.

Glanzmann thrombasthenia Integrin αIIbβ3
(ITGA2B and ITGB3 genes)

Normal platelet counts but defective platelet
aggregation. Rare ITGB2 and ITGB3 variants
characterized by macrothrombocytopenia
due to defective proplatelet formation have
been reported.

TUBB1-related thrombocytopenia β-1-tubulin (TUBB1 gene) Macrothrombocytopenia associated with
defective proplatelet formation and abnor-
mal protrusion-like platelet release due to the
functional deficiency of microtubules.

β-Actin-related thrombocytopenia β-Actin (ACTB gene) Thrombocytopenia. No functional studies
have been performed with patient-derived
megakaryocytes.

Immunodeficiency with inflammatory
disease and thrombocytopenia

Subunit of the ARP2/3 complex
(ARPC1B gene)

Microthrombocytopenia. Platelets from
patients display aberrant spreading, while
megakaryocytes show altered proplatelet
formation.

MYH9-related diseases Nonmuscle myosin IIA (MYH9 gene) Macrothrombocytopenia associated with ab-
normal megakaryocyte migration and defec-
tive proplatelet formation.

DIAPH1-related diseases Diaphanous-related formin 1
(DIAPH1 gene)

Macrothrombocytopenia due to cytoskeletal
dysfunction in megakaryocyte and defective
proplatelet formation.

Abbreviation: DNS, deviated nasal septum.
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preplatelet–platelet transitions.148,149 Assembly of spectrin
subunits into tetramers is required for invaginated mem-
brane system maturation and proplatelet extension. Consis-
tently, expression of a spectrin tetramer-disrupting
construct in megakaryocytes rapidly destabilizes proplate-
lets, causing blebbing and swelling. Spectrin tetramers play a
role in stabilizing the “barbell shapes” of the penultimate
stage in platelet production.149

New connections of actin assembly and MT dynamics
during proplatelet formation: The steps toward forming
functional platelets depend crucially on an underlying net-
work of dynamic, interconnected actin and MT polymers
(►Fig. 1C). The crosstalk between these two cytoskeletal
systems is coordinated by regulatory proteins such as for-
mins and profilin-1. Formins promote the elongation of
linear actin filaments and play a crucial role in the assembly
of cytoskeletal structures such as filopodia, lamellipodia, and
stress fibers. In addition, formins have recently been shown
to regulate MT dynamics directly.121 The expression level of
the formins DAAM1 (disheveled associated activator of
morphogenesis 1), DIAPH1 (diaphanous-related formin 1,
also known as mDia1), and FHOD1 (formin homology 2
domain containing 1) increases during megakaryocyte mat-
uration.150 Recent studies suggest that DIAPH1 may play
different roles on actin and MT cytoskeletons during plate-
let production: a mechanosensitive regulator of F-actin
structures and a coordinator of MT dynamics.151–153

DIAPH1 knock-down in cultured human megakaryocytes
increases proplatelet formation by increasing tubulin poly-
merization and stability. Conversely, the expression of a
constitutively active DIAPH1 inhibits proplatelet exten-
sion,152 and genetic variants of mDia1 are linked to macro-
thrombocytopenia in humans.153,154 The DIAPH1-related
disorder is characterized by macrothrombocytopenia and
hearing loss. The R1213X mutation (a heterozygous trun-
cating mutation in the DIAPH1 gene) results in constitutive
activation of DIAPH1 with cytoskeletal defects causing
reduced proplatelet formation.153–155 Recently, the clinical
phenotype and pathogenic variants of DIAPH1-RD have
been expanded.156

Transgenic mouse models deficient in mDia1, Fhod1, and
mDia1/Fhod1 double knockout have been recently analyzed
to assess the impact of formins on platelet production and
function. mDia1 knockout and mDia1/Fhod1 double knock-
out mice displayed altered platelet count and platelet size,
whereas Fhod1 knockout mice displayed normal platelet
count and volume.157 A surprising outcome from these
mice was the lack of any apparent functional platelet defect.
The mechanosensitive action of DIAPH1 during actin poly-
merization is controlled by the regulatory activity of Profilin-
1.158 Profilin-1 can regulate megakaryocyte MT dynamics,
most likely via its interactionwith formin proteins highlight-
ing the complex and essential role that formins may have in
regulating actin and MTs inmegakaryocytes and platelets. In
this regard, a biphasic effect of profilin-1 as a regulator of MT
(þ)-end turnover and critical actin regulatory role has been
proposed. Many details of the actin–MT interplay remain to
be resolved. Further studies are required to assess how

profilin and formins contribute to actin and MT dynamics
during platelet generation.159,160

Concluding Remarks

Inherited thrombocytopenias are a genetically heteroge-
neous group of disorders characterized by a reduced blood
platelet count. A subgroup of these disorders, known as
congenital macrothrombocytopenia, displays an abnormal
production of large platelets associated with a bleeding
tendency, ranging from mild to severe. Next-generation
sequencing has been used to reveal novel genes implicated
in these diseases.161 Cytoskeletal proteins play essential roles
in thrombopoiesis, and mutations in genes regulating the
dynamics of cytoskeletal proteins lead to several inherited
thrombocytopenias (►Table 1). The repertoire of cytoskele-
tal proteins required for megakaryocyte development, mi-
gration, podosome formation, and production of functional
platelets appears to be expanding quickly, suggesting that it
is more significant than previously thought. While past
studies on megakaryocyte function focused on the role of
primary cytoskeletal polymers, such as actin and tubulin, it is
becoming clear that these polymers’ performance depends
on the orchestrated action of several proteins that progres-
sively play a crucial role in platelet biogenesis. Despite
ongoing research toward understanding the functional
role of cytoskeletal proteins in megakaryocytes, our knowl-
edge of their contribution to the thrombopoietic process
is still incomplete. The generation of new mouse models
or in vivo visualization of cytoskeletal dynamics will allow
us to understand the complex cytoskeletal networks un-
derlying megakaryopoiesis, platelet biogenesis, and func-
tion. This knowledge will improve our understanding of
the pathophysiological mechanisms of inherited thrombo-
cytopenias associated with megakaryocyte cytoskeleton
dysfunction.
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