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Background and Significance

Clinical trials generate evidence about the effectiveness, effi-
cacy, or safety of new treatments.1 The success of a trial hinges
on timely recruitment of adequate representative patients.2,3

Overly restrictive eligibility criteria can limit the representa-
tiveness of study samples, and lead to low participation that
can delay the trial, lead to its termination, or cause safety
issues.4 Trial designers often rely onprevious clinical trials and
past experience for patient selection, but this type of selection

process can be subjective and lack transparent rationale.5,6

Van Spall et al7 reviewed 283 clinical trials and found that
84.1% of them contained at least one poorly justified exclusion
criterion. Whether these experiments can be extrapolated to
broader populations is uncertain, and the compromised gen-
eralizability of clinical studies is a long-standing concern.

Methods have been developed to quantify population
representativeness. A posteriori generalizability method
was developed to retrospectively examine clinical trial
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Abstract Background Clinical trials are the gold standard for generating robustmedical evidence,
but clinical trial results often raise generalizability concerns, which can be attributed to the
lack of population representativeness. The electronic health records (EHRs) data are useful
for estimating the population representativeness of clinical trial study population.
Objectives This research aims to estimate the population representativeness of
clinical trials systematically using EHR data during the early design stage.
Methods We present an end-to-end analytical framework for transforming free-text
clinical trial eligibility criteria into executable database queries conformant with the
Observational Medical Outcomes Partnership Common Data Model and for systemati-
cally quantifying the population representativeness for each clinical trial.
Results We calculated the population representativeness of 782 novel coronavirus
disease 2019 (COVID-19) trials and 3,827 type 2 diabetes mellitus (T2DM) trials in the
United States respectively using this framework. With the use of overly restrictive
eligibility criteria, 85.7% of the COVID-19 trials and 30.1% of T2DM trials had poor
population representativeness.
Conclusion This research demonstrates the potential of using the EHR data to assess
the clinical trials population representativeness, providing data-driven metrics to
inform the selection and optimization of eligibility criteria.
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population representativeness after study completion. Janson
et al8 examined the representativeness of a colon cancer
laparoscopic or open resection trial by comparing included
and excluded patients in the participating Swedish centers.
Van der Aalst et al evaluated the degree of self-selection in a
Dutch–Belgian randomized controlled lung cancer screening
trial to assess the generalizability of the study results.9 Bress
et al studied the generalizability of the Systolic Blood Pressure
Intervention Trial (SPRINT) in detail using data from the
National Health and Nutrition Examination Survey and found
a substantial percentage of U.S. adults met the eligibility
criteria for SPRINT.10 Such a posteriori generalizability analy-
ses areunable toprovideearly interventionduring trial design.

In contrast, the a priori generalizability assessment is an
eligibility criteria-driven analysis conducted before the trial
commences and can potentially provide early estimation of
the population representativeness to enable iterative refine-
ment of trial eligibility criteria. Weng et al proposed a
quantitative metric Generalizability Index for Study Traits
(GIST) to quantify the proportion of patients that would be
potentially eligible across trials with the same clinical trait
over the target population.11 This method can correlate
adverse events with criteria’s population representative-
ness.12 Later, Sen et al13 extended GIST to GIST 2.0 as a
quantitative metric to assess the a priori generalizability
based on population representativeness of a clinical trial by
accounting for the dependencies among multiple eligibility
criteria. Cahan et al proposed a metric that computes the
similarity between the study population and the target
population one characteristic a time.14 Despite the method-
ological advances contributed by the above studies, there has
been no integrated analytical pipeline that enables end-to-
end automatically systematic analysis of clinical trial popu-
lation representativeness.

Objectives

In thispaper,wecontributeanautomatedanalytical framework
that leverages natural language processing (NLP) technologies
toquantifyclinical trialpopulationrepresentativeness.Discrete

eligibility traits are extracted from free-text eligibility criteria,
and each trait represents a single eligibility rule conforming to
the Observational Medical Outcomes Partnership (OMOP)
Common Data Model (CDM).15 Queries are then formulated
based on the eligibility rules and executed on standardized
clinical data to construct a study cohort. Quantitative metrics
accounting for the difference of patients are provided based on
nonlinear regression. We applied the framework to 782 novel
coronavirus disease 2019 (COVID-19) trials and 3,827 type 2
diabetes mellitus (T2DM) trials to evaluate the population
representativeness, respectively.

Methods

The clinical trial protocol includes detailed experiment intro-
duction and requirements, which can be classified into
metadata and eligibility criteria. Metadata defines indexing
characteristics of clinical trials, such as study type, interven-
tion, medical condition, and study design. Eligibility criteria
define rules specifying who is eligible (inclusion criteria) or
ineligible (exclusioncriteria) toparticipate ina clinical trial and
are usually documented as free-text format.16►Fig. 1 provides
an overview of the analytical framework including eligibility
criteria annotation and normalization, query formulation, and
representativeness assessment modules.

Criteria Annotation and Normalization
To transform the eligibility criteria from free-text into a struc-
tured and normalized format, we performed Named Entity
Recognition (NER) to extract andnormalize concepts in criteria
text using an open-source tool called Critera2Query.17 Com-
pared with other NER tools such as cTAKES18 or MetaMap,19

Criteria2Query maps concepts into the OMOP CDM with
considerable precision (�90%) and recall (�71%). The OMOP
CDM is an open-source community standard for observational
healthcare data, with stronger international orientation than
anyotherdatamodel.15 It receives regular terminologyupdates
and iswidelyused in theglobal scientific community forhealth
data standardization.20,21 Entities in the criteria are automati-
cally recognized and classified into one of the six domains:

Fig. 1 Overview of the analytical framework. It takes free-text eligibility criteria as input, goes through Named Entity Recognition, Concept
Normalization and Query Formulation, all using the OMOP CDM, and executes the cohort query using EHR data and reports representativeness
of the study cohort in the EHR population visually. EHR, electronic health record.
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observation, drug, person, procedure, measurement and con-
dition, and then mapped to standard medical concepts in the
OMOPvocabulary. Entities can bedescribed by their attributes,
which define a range of values that the entities might hold. A
value or temporal type of attribute is usually used in the
eligibility criteria andnormalized togetherwith corresponding
entities. The value attributes are normalized as numerical
values with upper and lower boundaries. For example, “BMI
of 18.0 to 30.0kg/m2” is coded with a minimum boundary as
“18.0” and maximum boundary as “30.0” for the entity “mea-
surement of body mass index (BMI).” Regular expressions are
used to identify and convert different type of operators. The
temporal attributes are unified to the same unit (days) by
SUTime from standard NLP group.22 For example, “for at least
1 year before the screening visit” is coded into “�365 days
before the screening visit.”After normalizations, the attributes
are converted from strings to numerical data types and can be
comparable in a quantitative manner.

Each eligibility criterion contains one or more traits. A
criterion with three traits is shown in ►Fig. 2. A normalized
entity and its attribute form a “trait,” like “artificial respiration
within (0–7) days.” If there is no attribute, the normalized
entity itself can be a trait, such as the normalized entity
“endotracheal tube” or “incision of trachea.”

Query Formulation
Queries are automatically formulated with traits to identify
eligible cohorts from an OMOP CDM clinical database.►Fig. 3

shows the optimized query formulation and cohort discovery
process.

First, all patients eligible for a study condition or disease
(usually declared in the metadata of clinical trials) will be
selected from the EHR database to create the initial target
population. If a patient has multiple instances of record, only
the latest one will be counted so that a patient will enter a
cohort onlyonce. Distinct eligibility traits areused to formulate
queries. Temporary tables with eligible patients for each
distinct trait under the target population are created to reduce
the cost of repeatedly querying the original tables when
the same trait is defined in different criterion. The overall
eligible patients are the union of eligible patients for traits
connected by “OR” relationship, and intersection of eligible
patients for other traits. The studycohort of a clinical trial is the
intersection of eligible patients for all included eligibility
criteria. Exclusion criteria will be automatically negated in
the query formulation. The “join” clause is used to combine
multiple tables in the database.

Representativeness Assessment
The goal of the representativeness assessment is to determine
which traits have the strongest effect on the overall represen-
tativeness of a trial. A few existing models11,23 measure the
population representativeness by simply calculating the frac-
tion of the number of eligible patients, but that could fail to
distinguish patients in terms of their trait values. For example,
assumewe have two traits specified in a clinical trial and each

Fig. 2 Example traits, which can be an entity or an entity with its attribute, in a criterion.

Fig. 3 The query formulation and cohort identification process. The framework supports cohort identification for multiple trials with the same
study condition in a batch mode.
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of them has attribute with lower and upper bounds as►Fig. 4

shows. Each patient can then be represented by a two-dimen-
sional vector and each trait is a feature vector. Suppose patient
A and B are eligible for trait 1 and ineligible for trait 2, but their
recorded values for trait 2 are different. If we move the upper
bound of trait 2 higher to cover more patients, patient A will
need less boundary relaxation than patient B, but only count-
ing the number of eligible patients cannot model such
difference.

EHR data contain large amounts of information about
patients’ medical history including symptoms, examination
findings, test results, prescriptions, and procedures that
often have a nonlinear association.24 Support Vector Regres-
sion (SVR)25 model is an effective method to learn a nonlin-
ear model with a hyperplane.26 First, the trait feature vectors
are pre-possessed by removing the mean and scaling to unit
variance for standardization. Next, a robust support SVR
model with radial basis function (RBF) kernel is learned
from the standardized features, and the weight of each
patient is calculated by Eqs. 123.

Equations

subject to

For patient iwithmultiple traits, one trait is designated as
the dependent variable yi, and all others are designated as
independent variables xi to compute a hyperplane,w is the is
the normal vector to the hyperplane, and å defines a margin
of tolerance with default value as 0, äi is the weight assigned
to patient i that is inversely proportional to the residual
distance from the patient data point i to the hyperplane. We

define g_t and g_l as the metrics for the population repre-
sentativeness of a trait and trial in Eqs. 4 and 5.

where EP_traitk is the set of eligible patients of trait
k, EP_pool is the union of eligible patients of each trait and
EP_trial is the intersection of eligible patients of each trait.
EP_trial represents the target cohort of the clinical trial and
g_lmeasures its population representativeness. The g_t or g_l
score is always between 0 and 1, with higher score implying
greater population representativeness. A score of 0means no
patient was found eligible for the selected trait or trial. In
contrast, a score of 1 for g_tk means all patients with trait k
were eligible for the clinical trial, and a score of 1 for g_l
means the eligible patients for each trait are the same as the
eligibility criteria of the trial.

By training a regression model in analytical framework,
we can obtain the hyperplane and the average distance from
all points to this hyperplane is the shortest. In Eqs. 3, outliers
receive less weights, so the patients whose trait observations
differ significantly from others may influence the population
representativeness more than patients close to the hyper-
plane. If the g_l score is low and there are many outliers
against the hyperplane for a trait, the relaxation of the
corresponded criterion could improve the population repre-
sentativeness, so g_l score is a trait attention-guided metric
for the general clinical trial population representativeness
assessment.

Results

We applied the analytical framework on clinical trials of two
different diseases and assessed the population representa-
tiveness for each trial by calculating its g_l score and identi-
fying traits that limit the trial population representativeness
through g_t scores.

Datasets
We chose the clinical studies on two different diseases as our
datasets COVID-19 and T2DM. Since thefirst reported case in
December 2019, COVID-19 has spread rapidly from country
to country and become one of the worst pandemics in the
world’s history.27,28 T2DM, recognized as an important
public health problem by the World Health Organization,
can lead to serious damage to the heart, blood vessels, eyes,
kidneys, and nerves.29 A total of 782 interventional COVID-
19 and 38,27 T2DM clinical trials with recruiting site in the
United States were exported from ClinicalTrials.gov in
July 2020 by querying the study condition “COVID-19” and
“type 2 diabetesmellitus,” respectively. The study population
data are fromColumbiaUniversity IrvingMedical Center EHR
data that have been converted and stored in the OMOP CDM

Fig. 4 Example of a nonlinear regression model with two traits.
Traiti_lower and Traiti_upper represent the lower and upper bounds of
trait i. Each dot is a patient represented by a two-dimensional vector.
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format by querying the condition occurrence in “COVID-19
(ID 37311061)” and “type 2 diabetes mellitus (ID 201826).”
We identified 9,664 COVID-19 patients and 54,273 T2DM
patients.

Eligibility Criteria Normalization
The free-text eligibility criteria in the exported clinical trials
were translated to structured representations through the
entity recognition and normalization process. Each entity
was labeled as one of the following domains: procedure,

measurement, drug, condition, observation, and person.
The “person” domain includes two demographic criteria
“age” and “sex” for each trial. ►Tables 1 and 2 list the
statistical information for the extracted entities. Every
extracted entity was mapped to a standard medical
concept, and, if applicable for the entity, its attributes
were normalized. Different entities with the same meaning
may be mapped to the same concept.30 Three common
types of concept mappings (exact, partial, and semantic)
were presented in the ►Table 3.

Systematic Trial Population Representativeness
Assessment
With the normalized eligibility criteria, queries were auto-
matically formulated and then we applied the g_l metric to
assess the population representativeness for all COVID-19
and T2DM clinical trials. ►Figs. 5 and 6 show the distribu-
tions of g_l scores for COVID-19 and T2DM trials. The average
and median g_l scores for all COVID-19 trials are 0.065 and
0.02, respectively. Most (85.7%) trials’ g_l scores locate on the
low score area (less than 0.1), and very few trials have high
population representativeness. The average and median
g_l scores for all T2DM trials is 0.1 and 0.03, respectively.
The g_l scores of 29.3% trials equal to zero and 0% trials are
one, which is roughly consistent with the experimental
results produced by Sen et al.31 To improve the trial popula-
tion representativeness, the analytical framework provides
the option to drop the traits with zero g_t score.We removed
the traits with zero g_l score from the eligibility criteria and
recalculate the g_l score for every trial and assess the
population representativeness again. From the ►Fig. 5, we
can see there is an obvious increasement (the red color) of
the g_l scores, that means the population representativeness
of trials are improved. There are still 50.9% trials less than 0.1
that is because there are no enough COVID patients yet in the
database as of the time for this study. Asmore andmore EHRs
imported, there will be more eligible patients for various
traits in the database. From the►Fig. 6, we can see there is an
obvious increasement (the red color) of the g_l scores,
meaning the population representativeness of T2DM trials
are improved.

Table 2 Total count and percentage of entities in different
domains for COVID-19 and T2DM clinical trials

Domain COVID-19 T2DM

Count % Count %

Condition 6,601 38.88% 28,138 48.88%

Observation 3,946 23.24% 769 1.34%

Drug 2,199 12.95% 9,770 16.97%

Measurement 2,164 12.75% 10,681 18.55%

Procedure 1,372 8.08% 559 0.97%

Person 695 4.09% 7,654 13.29%

Total 16,977 100.00% 57,571 100.00%

Abbreviations: COVID-19, novel coronavirus disease 2019. T2DM, type 2
diabetes mellitus.

Table 1 Total count and percentage of entities extracted from
inclusion and exclusion criteria in COVID-19 and T2DM clinical
trials

Criteria type COVID-19 T2DM

Count % Count %

Inclusion 6,068 35.79% 23,194 40.29%

Exclusion 10,909 64.21% 34,377 59.71%

Total 16,977 100.00% 57,571 100.00%

Abbreviations: COVID-19, novel coronavirus disease 2019; T2DM, type 2
diabetes mellitus.

Table 3 Examples of extracted entities with their mapped concept and normalized attribute.

Entity Attribute Domain Concept ID Concept name Min. value Max. value

Shortness of
breath

None Condition 312437 Dyspnea

History of None Observation 4188893 History of

Systemic
corticosteroids

exceeding 10mg/day of
prednisone equivalent

Drug 21605200 Corticosteroids 10 Infinite

Weight >3 and <40 kg Measurement 3025315 Body weight 3 40

Mechanical
ventilation

>24 h Procedure 4230167 Artificial respiration 24 Infinite

Age 18–65 y Person 4156190 Age 18 65

Note: As presented in the table, the mapping procedure can vary based on the starting entity (e.g., “history of” and “age” are exact mappings;
“systemic corticosteroids” and “weight” are partial mappings; and “shortness of breath” and “mechanical ventilation” are completely semantic
mappings).
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To figure out which types of traits limit the trial popula-
tion representativeness, we calculate the g_t score for each
single trait and aggregate them by domains. ►Figs. 7 and 8

show the histogram of the g_t scores for all 16,977 traits for
COVID-19 clinical trials and 57,571 traits for T2DM clinical
trials in various domains. For COVID-19 trials, 32.48% traits
in condition domain, 47.74% in observation domain, 4.87% in
drug domain, and 29.96% in procedure domain have g_t
scores less than 0.1. For T2DM clinical trials, 16.7% traits in
condition domain, 31.7% traits in observation domain, 28.5%
traits in drug domain, 25.4% traits in procedure domain, and
17.1% traits in person domain have g_t scores less than 0.1.

The population representativeness of a trial depends on
the union of all traits it contains, so the traits with low g_t
scores will be directly related to the decrease of the overall
population representativeness, especially the traits with a
g_t score equal to 0. For the traits consisted of single medical

concept, the low g_t score is caused by no enough events
occurred in the EHR database. For example, patients who
died in the nursing home or long-term care facility after
discharge from the hospital cannot be identified in current
OMOP CDM, so the g_t scores for the observation “death in
nursing home or long-term care facility” will be 0. For the
traits composed of a medical concept together with its
attribute, the low g_t scores could be caused by either no
enough existence of records related to that specific concept
or too few records eligible for the condition that the attribute
specifies. For example, almost all patients’ “age” information
were recorded in the database, but very few people “older
than 65.” There are many “HbA1c” tests ordered and the
results were imported to the database, but results with
“HbA1c less than 7” are few, which is the value range
specified in the eligibility criteria of several T2DM clinical
trials.

Fig. 5 Histogram of the g_l score values for COVID-19 trials. The blue
color represents the trials with all traits included and the red color
represents the “relaxed” trials with zero g_t score traits removed.

Fig. 6 Histogram of the g_l score values for T2DM trials. The blue
color represents the trials with all traits included and the red color
represents the “relaxed” trials with zero g_t score traits removed.

Fig. 7 Histogram of g_t scores for traits in six domains for COVID-19
clinical trials. The y-axis indicates the count of traits.

Fig. 8 Histogram of g_t scores for traits in six domains for T2DM
clinical trials. The y-axis indicates the count of traits.
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Evaluation of Population Representation Assessment
To evaluate the analytical framework, we first measure the
correlation between patient representativeness metric for
the signal trait (g_t score) and the number of eligible patients,
and the results show they are positively correlated
(r¼0.8103, p<0.0001).►Tables 4 and 5 list the top 5 criteria
with highest and lowest patient representativeness in
COVID-19 and T2DM trials, respectively. Next, we evaluate
the g_l score on population representation assessment and
relaxation. Considering the labor cost, we randomly picked
two clinical trials from the COVID-19 and T2DM trial corpus
respectively for evaluation. ►Tables 6 and 7 present the
representation assessment results and relaxation process.

After initial patient representation assessment for the
COVID-19 trial (NCT04540406), the g_l score was 0.001mean-

ing the population representativeness is very poor, and only a
few patients were eligible for the trial (#p_l<20). Among all
the traits, “have prediabetes or T2DM” had the lowest popula-
tion representativeness (g_t¼0.002) that lowered the overall
trial population representativeness. This might be caused by
the data sparsity with no enough COVID-19 patients with
“prediabetes or T2DM” had been recorded in the database at
the time of experiment.Wemanually removed this trait in the
first roundof relaxation, andthentheg_l scorewas increased to
0.82 with acceptable population representativeness and 9,013
patients were found eligible. On the contrary, if we removed a
trait with high g_t score like “no extracorporeal membrane
oxygenation” for the trial, the population representativeness
will not changebecause it is derived fromthe intersection of all
traits and depends on the most restrictive one.

Table 4 Top 5 criteria with highest and lowest patient representativeness in COVID-19 trials

Criteria INC/EXC g_t
score

No. of eligible patients

Criteria with
highest patient
representativeness

Detection of 2019 novel coronavirus using polymerase
chain reaction technique (37310255)

INC 1.0 9,664

Ages (4156190) eligible for study: 12 y and older INC 1.0 9,664

Sexes (4135376) eligible for study: all INC 1.0 9,664

Fever (437663) INC 1.0 9,664

Cough (254761) INC 1.0 9,664

Criteria with
lowest patient
representativeness

Patient currently pregnant (4299535) INC 0.002 <100

History of active or treated lung cancer (255573) INC 0.001 <50

Patient receiving angiotensin converting enzyme (ace)
inhibitor or angiotensin receptor blocker
(arb) therapy (2617905)

INC 0 <10

Coronary artery bypass graft (4336464) INC 0 <10

Prediabetes (37018196) INC 0.001 <10

Abbreviations: COVID-19, novel coronavirus disease 2019. INC, inclusion. EXC, exclusion.
Note: Entities are in italic and followed by standard concept IDs.

Table 5 Top 5 criteria with highest and lowest patient representativeness in T2DM trials

Criteria INC /EXC g_t score No. of eligible patients

Criteria with
highest patient
representativeness

Diagnosed with type 2 diabetes (380096) INC 1.0 54,273

Gender (4135376): all INC 1.0 54,273

HbA1c (2212392) measurement INC 1.0 54,273

Drug abuse (436954) EXC 0.99 54,262

Ages (4156190) Eligible for Study:
18 Years and older

INC 0.99 54119

Criteria with
lowest patient
representativeness

unstable chronic disease (443783) EXC 0.0003 <100

oral antidiabetic drug: α-glucosidase
inhibitors (1169352)

INC 0.001 <50

Age (4156190):9–16 INC 0.002 <50

Female of childbearing age (4142985) INC 0.001 <10

using adequate contraception (4027509) INC 0 <10

Abbreviations: T2DM, type 2 diabetes mellitus; INC, inclusion; EXC, exclusion.
Note: Entities are in italic and followed by standard concept IDs. To protect patient privacy, all criteria where the count of eligible patients less than
100 were not provided with the actual number.
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After the initial assessment for the T2DM clinical trial
(NCT01032629), the population representativenesswaspoor
(g_l¼0.04), and 854 patients were found eligible. The trait
“cardiovascular disease” had the lowest g_t score, and we
tried to manually remove it in the first round of relaxation,
and then the trial had better population representativeness
and the number of eligible patients was increased to 10,457.
The trait “HbA1c” is usually used in T2DM trials as the
primary defining trait, but sometimes its value range might
be a little restrictive. Compared with other traits, “HbA1c”
had relatively lower g_t score, so its range was relaxed from
(6.5–8) to (5.7–10) in the second round of relaxation, and
then the number of eligible patients was almost doubled.

The target cohort needs to meet all the eligibility traits
(rules) in the clinical trial, so overly restrictive traits will
make the targe cohort less representative with fewer
patients. The g_t and g_l scores can be useful metrics in
qualifying the trial population representativeness assess-
ment and indicators for identifying restrictive traits and

guiding the loosening of eligibility criteria to improve the
clinical trial population representativeness.

The analytical framework improves the computational
efficiency by using temporary tables and processing trials
in a batch mode. We evaluated the performance of the
analytical framework by analyzing the computation time
for calculating the population representativeness score and
compared the results with that from using GIST 2.0 on an
iMac computer with Intel Core I7 (4.2 Ghz) CPU, 16 GB
2400MHzDDR4memory, and 1TB SSD hard disk. On average,
GIST 2.0 spends 1,332.85 seconds in total for population
representativeness score calculation, while the proposed
framework only needs 101.64 seconds, which is 93.4% faster
than GIST 2.0.

Discussion

We have presented an end-to-end systematic population
representative analytical framework and applied it to clinical

Table 6 List of population representation assessment results for COVID-19 trial NCT04540406

Trait Initial Assessment
g_l¼ 0.001, #p_l<20

1st relaxation: remove
“have prediabetes or T2DM”
g_l¼0.82, #p_l¼ 9,013

2nd relaxation: remove
“No Extracorporeal membrane
oxygenation”
g_l ¼0.82, #p_l ¼9,013

g_t #p_t g_t #p_t g_t #p_t

Age >¼ 18 0.94 9,057 0.94 9,057 0.94 9,057

Sex: all 1.00 9,664 1.00 9,664 1.00 9,664

Disease caused by severe
acute respiratory
syndrome coronavirus 2

1.00 9,664 1.00 9,664 1.00 9,664

No Blood transfusion reaction 0.99 9,654 0.99 9,654 0.99 9,654

No Extracorporeal membrane
oxygenation

0.98 9,621 0.98 9,621

Have prediabetes or T2DM 0.002 < 20

Abbreviations: COVID-19, novel coronavirus disease 2019. T2DM, type 2 diabetes mellitus.
Note: #p_t: the number of eligible patients for a specific trait, #p_l: the number of eligible patients for all traits. “Relaxed” traits are in italics. To
protect patient privacy, all criteria where the count of eligible patients less than 100 were not provided with the actual number.

Table 7 List of population representation assessment results for T2DM clinical trial NCT01032629

Trait Initial assessment
g_l¼ 0.04, #p_l¼854

1st relaxation: remove
“cardiovascular disease”
g_l ¼0.22, #p_l ¼10,457

2nd relaxation: update
HbA1c: (5.7–10)
g_l ¼0.31, #p_l ¼22,243

g_t #p_t g_t # p_t g_t #p_t

Age >50 0.94 44,689 0.94 44,689 0.94 44,689

Sex: all 1.00 54,273 1.00 54,273 1.00 54,273

No sitagliptin 0.99 54,244 0.99 54,244 0.99 54,244

No Ketoacidosis 1.00 54,273 1.00 54,273 1.00 54,273

No Type 1 diabetes mellitus 0.95 48,291 0.95 48,291 0.95 48,291

HbA1c: (6.5–8) 0.34 13,162 0.34 13,162 0.42 28,534

Cardiovascular disease 0.09 3,781

Abbreviations: T2DM, type 2 diabetes mellitus.
Note: #p_t: the number of eligible patients for a specific trait, #p_l: the number of eligible patients for all traits. “Relaxed” traits are in italics.
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studies on real patient EHRs. Overly restrictive eligibility
criteria were identified and filtered to improve the clinical
trial population representativeness. The population represen-
tativeness assessment consists ofmultiple steps, and there are
potential reasons that may affect representativeness assess-
ment results.

Inaccurate or incomplete criteria extractionmight limit the
automatic population representativeness analysis by either
underestimating or overestimating the population represen-
tativeness score. Due to the semantic complexity, it is hard for
automatic informationextraction tools to reach100%accuracy
in either NER or criteria normalization.32,33 For traits with
numeric values, the possible unit difference between the
criteria and EHR data might also impede the population
representativeness evaluate. In this study, these inaccurate
annotations were manually updated by domain experts. The
updated information extraction pipeline Criteria2Query
(http://34.70.212.14:8080/criteria2query_box/) is enhanced
with an editable user interface so that human experts can
manually review and edit the output for better accuracy.
Moreover, for all the trials analyzed in this study, two
reviewers (A.B. and J.R.) examined the results manually and
recommended updates as needed. A medical terminology
search engine Athena (http://athena.ohdsi.org) that provides
searching of concepts in the OMOP CDM is used to assist
experts in spot check in case of doubt for some concepts. All
processed criteria were reviewed by a third annotator (Y.S.) to
check for and resolve discrepancies.

The ambiguity of eligibility criteria themselves also lead to
the failure of the clinical trial population representativeness.
For example, in the exclusion criteria “with clinical mani-
festation of renal impairment (e.g., a creatinine value of 1.5
times or more of the upper reference limit (NCT01318135),”
the “creatinine value” is described as “upper limit of nor-
mal” without declaring the exact value by trial conductors.
The normal range of some laboratory measurements are not
unique and dependent on institutions and patient charac-
teristics such as sex. Without explicit mention of the
reference range, it might result in unreal estimation of trial
population representativeness.

Different institutions may use different medical concept
coding systems or data models, and the concepts extracted
from the eligibility criteria by the analytical framework may
not be successfully mapped to the patient EHR data from
other systems. In our EHR data, all medical concepts have
beenmapped to the standard concepts in theOMOPCDM. For
example, the blood test measurement “hemoglobin A1c”
were coded as multiple concepts in the original EHRs such
as “hemoglobin A1c/hemoglobin.total in blood (LOINC
3004410),” “hemoglobin A1c/hemoglobin.total in blood by
HPLC (LOINC 3005673)” and “deprecated hemoglobin A1c in
blood (LOINC 40758583),” but all converted to the standard
concept “hemoglobin; glycosylated (A1C) (2212392)” in the
OMOPCDMcompliant version. It may fail in cohort discovery
for “hemoglobin A1c” coded by other data models.

Eligibility criteria need to be clinically justified so that low
representativeness scores (g_m or g_l) do not necessitate the
need to loosen a criterion. This framework is designed to serve

as a decision aid for clinical trial designers by improving
the transparencyofpopulation representativeness of individual
criteria and alerting clinical experts of potentially unrepresen-
tative or restrictive criteria. The output of each module,
including eligibility criteria normalization, query formulation,
population representativeness assessment, is all preserved and
formatted for convenient verification by domain experts.

Conclusion

In this paper, we contributed an integrated clinical trial popu-
lation representativeness assessment pipelineand applied iton
COVID-19 trials and T2DM trials for representativeness assess-
ment. A few limitations that may compromise the representa-
tiveness estimation accuracy were discussed. As our future
research, we plan to improve the medical entity recognition
and hierarchical concept mapping for more accurate popula-
tion representativeness assessment.

Clinical Relevance Statement

The success of a trial depends on the inclusion of adequate
participants. Leveraging EHR data to support the clinical trial
design process addresses the need of investigators to optimize
the eligibility criteria to avoid poor population representative-
ness. Automatic and systematic eligibility criteria normaliza-
tion and query formulation framework reduces the human
labor when evaluating the population representativeness of
clinical trials.

Multiple Choice Questions

1. What are queries formulated with to identify eligible
cohorts from the clinical database?
a. Entity
b. Attribute
c. Trait
d. Domain

Correct Answer: The correct answer is option c. Queries
formulated with traits to identify eligible cohorts. A trait
can be an entity or an entity with its attribute in a
criterion.

2. What does a high g_l score mean?
a. Great population representativeness of a clinical trial
b. Poor population representativeness of a clinical trial
c. Great population representativeness of an eligibility

criterion
d. Poor population representativeness of an eligibility

criterion

Correct Answer: The correct answer is option a. g_l is the
metric to measure the population representativeness of a
clinical trial with its value between 0 and 1, with higher
scores representing greater representativeness.

Protection of Human and Animal Subjects
Nohuman or animal subjectswere involved in the project.
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