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Abstract Objective The change in performance of machine learning models over time as a
result of temporal dataset shift is a barrier to machine learning-derived models
facilitating decision-making in clinical practice. Our aim was to describe technical
procedures used to preserve the performance of machine learning models in the
presence of temporal dataset shifts.
Methods Studies were included if they were fully published articles that used
machine learning and implemented a procedure to mitigate the effects of temporal
dataset shift in a clinical setting. We described how dataset shift was measured, the
procedures used to preserve model performance, and their effects.
Results Of 4,457 potentially relevant publications identified, 15 were included. The
impact of temporal dataset shift was primarily quantified using changes, usually
deterioration, in calibration or discrimination. Calibration deterioration was more
common (n¼11) than discrimination deterioration (n¼3). Mitigation strategies were
categorized as model level or feature level. Model-level approaches (n¼ 15) were more
common than feature-level approaches (n¼2), with the most common approaches
being model refitting (n¼ 12), probability calibration (n¼7), model updating (n¼ 6),
and model selection (n¼ 6). In general, all mitigation strategies were successful at
preserving calibration but not uniformly successful in preserving discrimination.
Conclusion There was limited research in preserving the performance of machine
learning models in the presence of temporal dataset shift in clinical medicine. Future
research could focus on the impact of dataset shift on clinical decision making,
benchmark the mitigation strategies on a wider range of datasets and tasks, and
identify optimal strategies for specific settings.
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Background and Significance

Over 250,000 risk stratificationmodel-relatedpapers havebeen
published, primarily over the last two decades.1 The substantial
increase in the ability to create predictivemodels in health care
systems is largely due to the widespread adoption of electronic
health records (EHRs) and the dramatic increase in the capacity
to store and perform computations with large amounts of data.
Many machine learning models developed using EHRs have
demonstrated excellent performance with regards to discrimi-
nation and calibration.2,3 For these models to be effectively
adopted in health care systems, they need to sustain a high level
of performance to outweigh the estimated $200,000 cost of
integratingeachmodel intoclinicalworkflows4aswell as togain
and maintain the trust of health care professionals that incor-
porate them into their clinical decision-making processes.5

However, maintenance of model performance may be difficult
because of changes in the health care environment over time.

Changes in health care over time can occur at the level of
patients, practice, or administration. Variation in patients
can occur based on changes in demographic characteristics
of a catchment area, referral patterns, or emergence of novel
diseases, as examples. Variation in practice can occur based
on the results of major trials or guidelines; evolving practice
patterns of health care professionals6; and changes in per-
sonnel, drug or test availability, and reimbursement policies
at an institution. Variation in administration reflects those
affecting the EHR such as EHR modifications, change in EHR
vendor,7 choice of coding system/version,8 and coding prac-
tices. Together, these changes introduce a dataset shift due to
mismatch between the distribution of the data used for
model development and deployment.9 Dataset shifts over
time can be abrupt, gradual, incremental, or recurring
(►Supplementary Fig. S1 [available in the online version])
and can have varying degrees of impact.

Dataset shift is a major barrier to the generalizability of
machine learning models across health care institutions and
over time.10 Although model generalizability across both geog-
raphy and time are desirable, temporal generalization places
more emphasis on producing deployable models aimed at
preserving performance in a specific healthcare system.11 Be-
cause in actual deployment dataset shifts are often difficult to
anticipate and only identified when changes in calibration or
discrimination are examined, approaches that make machine
learning models robust to these changes are an important step
toward the reliable application of machine learning in health-
care. Despite the existence of hundreds of publications on
methods of dataset shift detection and mitigation,12 it was
unclear how many had been applied in clinical medicine. This
calls for a systematic review of mitigation strategies aimed at
reducing the impactofdataset shiftonclinicalpredictionmodels
to identify promising solutions anddetermine future directions.

Objectives

The aim was to describe technical procedures used to pre-
serve the performance of machine learning models in the
presence of temporal dataset shift in clinical medicine.

Methods

We followed the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) recommendations for
reporting.13

Data Sources and Searches
The literature search was conducted by a library scientist in
the following databases: Medline, Medline in-process, Med-
line epubs ahead of print, Embase, APA PsycInfo, arXiv and
web of science. ►Supplementary Table S1 (available in the
online version) describes the full search strategy; it included
publications from database inception to January 21, 2021.
For the search, we included the Medical Subject Heading
terms and text words that identified machine learning
(including text words for machine learning package names
and algorithms) and dataset shift (including dataset, distri-
bution, domain, covariate, and concept shift or drift). We
further included text words that identified consequences of
dataset shift (including performance and calibration shift or
drift). The set was limited to English publications and studies
involving humans.

Study Selection
Eligibility criteria were defined a priori. Studies were includ-
ed if they were fully published studies that used machine
learning and implemented a technical procedure to address
temporal dataset shift. We defined machine learning as
methods that learn a model using a dataset (training data)
by automatically determining a function that maps a set of
inputs (features) to their corresponding outputs (labels) with
the goal of predicting an outcome using the trainedmodel in
a new dataset not yet seen (test data).

Studies were excluded if they did not implement a miti-
gation strategy for temporal dataset shift, if they did not
address a clinical problem such as predicting a patient
outcome or if they were duplicate publications. We also
excluded studies focused on sensor data (i.e., physiological
signals) evaluatedwithin single patients, as our intent was to
address temporal dataset shift occurring across different
patients over a time span of months to years.

Two reviewers (L.L.G. and L.S.) independently evaluated
the titles and abstracts of studies identified using the search
strategy, and potentially relevant publications were re-
trieved in full. Both reviewers then applied the eligibility
criteria to the full text articles and made decisions indepen-
dently. Discrepancies were resolved by consensus or arbitra-
tion by a third author (S.R.P.) if required.

Data Abstraction and Methodological Approach
Two reviewers (L.L.G. and L.S.) abstracted all data in duplicate;
discrepancies were resolved by consensus. The primary out-
comewas the technical procedure usedwhere the goal was to
preserve the performance of machine learning models in the
presence of temporal dataset shift. These were classified as
model-level or feature-levelmitigation strategies.Model-level
mitigation strategies were further categorized into fixed
methods, characterized by models with static parameters
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upon training; online learning, characterized by models with
dynamicparametersupon training; andmodel selection. Fixed
methods includedprobability calibration (methods that adjust
the predicted probabilities of a base model using logistic
regression while retaining the base model’s parameters) and
model refitting (re-estimatingmodel parameters using updat-
ing data, and once the parameters are re-estimated, they
become fixed until the arrival of new data). Online learning
includedmodel updating (methods that incrementally update
[instead of entirely refit] the model parameters as new data
become available), and ensemble models (methods that com-
bine the predictions of a set of models and weigh their
contributions). Model selection involved statistical tests to
select the best mitigation strategy among a set of strategies.
Feature-level mitigation strategies process features prior to
model fitting and were categorized into learning-based (data
driven) and expert knowledge-based (domain expertise driv-
en) methods.

We recorded if the mitigation strategy was successful at
preserving the performance of the machine learning model
over time. In addition, we described factors reported to be
associated with temporal dataset shift by the authors, and
how the impact of temporal dataset shift was quantified.

Study Demographics and Risk of Bias
Demographic information included year published, pediatric
versus adult cohort, population studied, data source, machine
learning algorithm(s) implemented, and the number of time
periods (i.e., discrete timewindows) inwhich temporaldataset
shift was examined. We also abstracted the label, whether
models were developed by using data from a single center or
multiple centers, the number of mitigation strategies imple-
mented and whether calibration and discrimination deterio-
ration were reported to be present, absent, or not reported.

Data related to the risk of bias was based upon an
approach suggested by Luo et al.14 We abstracted whether
descriptions of inclusion and exclusion criteria, sample,
response variable, information leakage prevention, data
preprocessing (including handling of missing data), data
splitting, and validation metrics were reported. We also
determined if the code used to train and validate models
was made publicly available.

Statistical Methods
Based upon the nature of the outcomes, synthesis was not
performed. Statistical analysis involved describing propor-
tions for the categorical outcomes.

Results

►Supplementary Fig. S2 (available in the online version)
illustrates the flow diagram of study identification and
selection. A total of 4,457 potentially relevant references
were identified; 75 manuscripts were retrieved for full-text
evaluation. After the exclusion of 61 manuscripts, 14 were
retained in the systematic review. The most common reason
for exclusionwas the focus on a nonclinical problem (n¼46).
One additional publication was identified from an author’s

personal reference list. Thus, 15 manuscripts were included
in the systematic review.

►Table 1 and ►Supplementary Table S2 (available in the
online version) describe the demographic characteristics of
the 15 studies. Eight studies were published in or after 2018.
The most common machine learning algorithm was logistic
regression (n¼13), and five studies employedmore than one

Table 1 Characteristics of studies addressing dataset shift in
clinical medicine (n¼ 15)

Characteristic n (%)

Published in 2018 or later 8 (53)

Pediatric study population 1 (7)

Population

Intensive care or neonatal intensive care 5 (33)

Surgical 5 (33)

Inpatients 4 (27)

Prostate biopsy 1 (7)

Data source

Administrative 4 (27)

Registry 4 (27)

Electronic health record 4 (27)

Trial 2 (13)

Combination 1 (7)

Machine learning algorithma

Logistic regression 13 (87)

Random forest 4 (27)

Gradient boosting 1 (7)

Artificial neural network 2 (13)

Multiple 5 (33)

Number of time periods examined

1–4 5 (33)

5–10 6 (40)

> 10 4 (27)

Factors reported to be associated with
temporal dataset shifta

Change in outcome rate 8 (53)

Change in case mix 3 (20)

Change in predictor-outcome association 2 (13)

Change of record-keeping system 2 (13)

Not reported 5 (33)

Quantification of the impact of temporal
dataset shifta

Change in calibration 11 (73)

Change in discrimination 12 (80)

Change in both calibration and
discrimination

9 (60)

aAs a study could belong to multiple categories, the total number does
not equal the number of studies.

Applied Clinical Informatics Vol. 12 No. 4/2021 © 2021. Thieme. All rights reserved.

Temporal Data Shift in Machine Learning Guo et al.810

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



algorithm. The number of time periods examined ranged
from 1 to 36. Temporal dataset shift was not formally defined
but were reported in some studies to be associated with
changes in outcome rate (n¼8), case mix (n¼3), predictor-
outcome association (n¼2), and record-keeping system
(n¼2). All but one study quantified temporal dataset shift
using change in calibration (for example, Cox recalibration
intercepts, or slopes15) or discrimination (typically the area-
under-receiver-operating-characteristic curve). While all 11
studies evaluating calibration reported temporal calibration
deterioration, only three of 12 studies evaluating discrimi-
nation reported temporal discrimination deterioration. Fur-
thermore, therewas no consensus in delineating a difference
threshold to define model deterioration. ►Supplementary

Table S2 (available in the online version) also illustrates that
the three studies reporting discrimination deterioration
were single-center studies by using data from Beth Israel
Deaconess Medical Center, while the nine studies reporting
that discrimination deterioration was absent or uncertain
were multicenter studies. ►Supplementary Table S3 (avail-
able in the online version) summarizes the risk of bias
assessment across the 15 studies. The most poorly reported
domainwas code availability, which was present in only two
manuscripts.

►Table 2 summarizes the mitigation strategies used to
preserve machine learning performance in the presence of
temporal dataset shift. The most common approach was
model refitting (n¼12), followed by probability calibration
(n¼7), model updating (n¼6), and model selection (n¼6).
Below, we separately describe each category and its success
in mitigating the impact of temporal dataset shift.

Model-Level Mitigation Strategies
All 15 studies employed mitigation strategies at the model
level, with or without additional feature processing. Among
the 12 studies that used a fixed method, models were trained
by using data from a specific timewindow16–24 or data across
all past timewindows.22,25–27 Seven studies applied probabil-
ity calibration in the form of mean correction16–18,20,23,24,27

(adding an intercept), proportional change16–18,20,23,24,27

(adding a slope), or nonlinear mappings between baseline
predictions and outcomes.16,24Along with adjusting themod-
el predictions, Su et al23 and Janssen et al20 added individual
predictor variables to the logistic model, thus allowing addi-
tional parameters to be estimated. All probability calibration
methods were reported to be successful in mitigating the
impact of temporal dataset shift on calibration across several
scenarios. However, these methods often did not improve
discrimination.17,18,23 Furthermore, there was no single best
approach among the probability calibrationmethods. Thebest
approach depended on the size of the updating data, the
complexity of the base model and the factor associated with
the shift.16–18,24

Model refitting was used in 12 studies.16–27 In four
studies, it served as a comparator against other mitigation
strategies.16,24–26 In five other studies, it improved calibra-
tion, but often not more than probability calibration meth-
ods.19–21,23,27 Nestor et al found that model refitting using
data from the previous year protected against discrimination
deterioration related to a change in the record keeping
system.25,26 Adam et al later used simulations to show that
refitting using all available data better protected the model
from biases to do with feedback loops in which imperfect

Table 2 Mitigation strategies to address dataset shift in clinical medicine

Model level Feature level

Fixed Online learning Model selection

Study (Year) Probability
calibration

Model
refitting

Model
updating

Ensemble
model

Learned Expert
knowledge

Feng (2020)28 ●

Adam (2020)22 ● ●

Davis (2019)16 ● ● ●

Davis (2019)24 ● ● ●

Nestor et al (2019)25 ● ● ●

Siregar (2019)17 ● ● ● ●

Nestor et al (2018)26 ● ●

Su (2018)23 ● ● ● ●

Davis (2017)30 ●

Davis (2017)29 ●

Siregar et al (2016)18 ● ● ● ●

Strobl et al (2015)27 ● ● ●

Hickey et al (2013)19 ● ●

Janssen (2008)20 ● ●

Parry (2003)21 ●

Note: The black dot indicates that the mitigation strategy was used in the corresponding study.
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model predictions (such as false positives) can influence
future labels.22

Online learning was used in 11 studies and consisted of
model updating (n¼6) and ensemble models (n¼2). The
most commonmodel updating approach was Bayesian mod-
el updating (n¼7).17–19,23,27 Although this method was
reported to be successful at mitigating the impact of dataset
shift on model calibration,19 it did not outperform probabili-
ty calibration methods.17,18,23,27 The other model updating
approach was a single step gradient descent that used the
updating data to update model parameters. This updating
method performed using all historical dataworked as well as
refitting the model using the same data.22

An ensemble model approach was used by two studies.
Feng et al developed an ensemblemethod that used updating
data to learn how to approve modifications to an existing
random forest model. The method produced predictions
using the weighted average of a family of strategies that
differed in their optimism for the modifications.28 This
method safely and autonomously approved new modifica-
tions while adapting to temporal dataset shift. Su et al
submitted the output of two dynamic linear models to a
logistic regression to be used as predictors, also known as
model stacking. Although this approach achieved success in
reducing the impact of temporal dataset shift on model
calibration, this method was no more effective than each
individual dynamic linear model.23

Model selection was used in six studies.16–18,24,29,30 One
approach by Davis et al was a data-driven selection proce-
dure that balanced performance against the simplicity of the
mitigation strategy. Using the updating data, the procedure
nonparametrically compared the performance of several
methods that varied in complexity with respect to data
requirements and analytical resource demands including
no updating, probability calibration, and model refitting.
The procedure selected the simplest method that had sta-
tistically indistinguishable performance compared with the
more complex methods. Complexity of the mitigation strat-
egy recommended by this selection procedure increased
with the severity of calibration deterioration,16 size of the
updating data,16 and model complexity.16,24

Feature-Level Mitigation Strategies
Two studies used learned and expert knowledge-based
methods to address temporal dataset shift caused by a
change in the record-keeping system at a single center.25,26

One study used a learned method to apply principal
component analysis to reduce the dimensionality of the
feature space. This method was not successful in reducing
discrimination deterioration.25 The two studies that used
expert knowledge-based mitigation strategies evaluated
code mapping25 and feature grouping.25,26 Code mapping
is an automatic procedure that maps the identifier of each
feature to its associated Concept Unique Identifier using the
Unified Medical Language System.31 Code mapping was not
effective in reducing discrimination deterioration. In con-
trast, manual grouping of features into their underlying
concept by clinical experts was the only feature-level miti-

gation strategy that was successful in reducing temporal
discrimination deterioration.

Discussion

This systematic review described the technical procedures
used in clinical medicine to preserve the performance of
machine learningmodels in the presence of temporal dataset
shift. We identified 15 publications that quantified the
impact of temporal dataset shift on clinical prediction mod-
els and examined technical procedures to address the im-
pact. We found that temporal calibration deterioration was
more common than temporal discrimination deterioration.
Model-level mitigation strategies to address temporal data-
set shift were more common than feature-level mitigation
strategies, with the most common approaches being model
refitting, probability calibration, model updating, and model
selection. In general, all mitigation strategieswere successful
at preserving calibration but not uniformly successful at
preserving discrimination.

The number of identified publications examining miti-
gation strategies to address temporal dataset shift in
clinical medicine was small, and even smaller if only
unique approaches were considered. This stood in contrast
to the large body of literature evaluating mitigation strat-
egies outside of clinical medicine. Because our search
strategy and screening of titles and abstracts would have
omitted some nonclinical publications, the 46 articles
excluded at full text screening because the setting was
nonclinical is a subset of the total nonclinical literature.
This estimation is supported by a review describing 130
publications on temporal concept shift.32 Our finding
suggests that methodological research addressing this
important topic has lagged in clinical medicine, a result
that is important since mitigation strategies successful in
nonclinical settings may not be successful when applied to
clinical data.33

The identified studies suggested that the best choice of
mitigation strategy depended on the type and severity of
dataset shift.16 Currently, there is no standard approach
that maps a type of dataset shift within a specific setting to
a specific mitigation strategy. Moreover, there is often
variability in how the term dataset shift and its subcate-
gories are defined.9,32 To begin to address these issues, we
first recommend the standardization of terminology and
common assumptions related to dataset shift. We suggest
basing temporal dataset shift terminology upon previously
used terms and definitions.9,34 Typical categories of data-
set shift are expressed in terms of assumptions as to which
statistical relationships are likely to be stable or change
across time on the basis of the assumed directionality and
stability of the causal relationships between the features,
the outcome, and any unobserved confounders. In this
framing, the general problem of dataset shift is one where
joint distributions of the training and the test data are
different, that is, Ptrain (y, x) 6¼ Ptest (y, x), where y
represents the outcome variable and x represents a set
of features or covariates.
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If it is assumed that the outcome causally depends on the
features X (i.e., an X ! Y assumption consistent with the
prediction of future outcomes), then plausible settings may
include covariate shift, where Ptrain (x) 6¼ Ptest (x) and Ptrain (y|
x)¼ Ptest (y|x). This corresponds to a change in the distribu-
tion of features without an accompanying change in the
relationship between the features and the outcome. In
contrast, a change in the relationship between the features
and the outcome is termed concept shift, that is, Ptrain (y|x) 6¼
Ptest (y|x) and Ptrain (x)¼Ptest (x). Note that covariate shift and
concept shift can coexist. Conversely, under the Y ! X
assumption (consistent with image classification where
the disease Y causes the change in pixels X),35 prior proba-
bility shift occurs if the probability of the outcome changes
without a corresponding change in the relationship between
the outcome and the features, that is, Ptrain (y) 6¼ Ptest (y) and
Ptrain (x|y)¼ Ptest (x|y). ►Supplementary Fig. S3 (available in
the online version) diagrammatically describes each catego-
ry of shift and provides illustrative clinical examples that
align with an X ! Y assumption.

Beyond standardization of terminologies, we encourage
benchmarking of established mitigation strategies from the
machine learning literature in different datasets and in
different patient populations to identify, if there are mitiga-
tionmethods that are preferred depending on a specific type
of shift or clinical setting. Several promising approaches to
address differences between training and test distributions
(not restricted to temporal dataset shift) have been devel-
oped in recent research on machine learning outside of
clinical studies. These approaches aim to produce robust
models, for instance, by incorporating more expressive do-
main knowledge as towhich causal mechanisms are likely to
be stable or change across time36 or by estimating invariant
relationships across different environments.37,38

One issue that has not been highlighted prominently is
how temporal dataset shift affects clinical decision-mak-
ing.10 Regardless of the degree to which there is deteriora-
tion in calibration or discrimination, it is important to
evaluate the impact of temporal dataset shift in the context
of its impact on clinical decision-making and downstream
outcomes.39 We suggest that this element be explicitly
examined in future studies.

The strength of this review is the focus on an issue highly
relevant to the deployment of machine learning models in
the clinical setting, namely temporal dataset shift. Another
strength is the use of two reviewers for each step in the
systematic review. However, there are several limitations.
First, despite our attempt to be exhaustive in the search,
some conference proceedings (e.g., proceedings of machine
learning research) with potentially relevant papers were
missed. Nonetheless, our search identified and evaluated
many preprints of papers in these proceedings obtained
from arXiv. Second, some deployed clinical prediction mod-
els may have built-in periodic recalibration, refitting, or
incorporated other approaches that mitigate temporal data-
set shift but were not published. These approacheswould not
have been identified by this review. Third, we focused on
temporal dataset shift and did not also examine geographic

dataset shift. While we recognize both areas are important,
we chose to focus on temporal shift, as this would have
greater relevance in a common deployment setting, where
models are trained and evaluated using a single institution’s
data. Lastly, our search strategy excluded studies that delin-
eated temporal dataset shift without applying a clinical
prediction model. Such methods are complementary to the
mitigation strategies reviewed in this study.40

Conclusion

In conclusion, the objective of this systematic review was to
describe technical procedures used to preserve the perfor-
mance of machine learning models in the presence of tem-
poral dataset shift in clinical medicine. We identified 15
studies in total, and consequently there was limited research
in this area. Future research could evaluate the impact of
dataset shift on clinical decision making, benchmark mitiga-
tion strategies on a wider range of datasets and identify
optimal approaches for specific settings.

Clinical Relevance Statement

Temporal dataset shift associatedwith changes in health care
overtime is a barrier to deploying machine learning-based
clinical decision support systems. This systematic review
identified limited methodological research that aimed to
mitigate the impact of temporal dataset shift on the discrim-
ination performance of clinical prediction models. We rec-
ommend more benchmarking of mitigation strategies on a
wider range of datasets and tasks to better characterize the
impact of temporal dataset shift and identify suitable sol-
utions for specific settings.

Multiple Choice Questions

1. Which of the following options is a feature-level mitiga-
tion strategy aimed to reduce the impact of temporal
dataset shift on clinical prediction model performance?
a. Periodic re-estimation of model parameters (i.e., model

refitting).
b. Ensemble methods that combine the predictions of a

set of models and weight their contributions.
c. Aggregation of features according to their underlying

concept by clinical experts.
d. Methods that adjust the predicted probabilities of a

base model using, for example, logistic regression.

Correct Answer: The correct answer is option c. Model
refitting, ensemble methods, and probability calibration
are model-level mitigation strategies. See ►Table 2 for
grouping of mitigation strategies.

2. Which of the following options fits the definition of
dataset shift aswhen the joint distributions of the training
and the test data are different? For all options, x repre-
sents a set of features or covariates and y represents the
outcome variable.
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a. Ptrain (y, x) 6¼ Ptest (y, x)
b. Ptrain (x) 6¼ Ptest (x)
c. Ptrain (y|x) 6¼ Ptest (y|x)
d. Ptrain (y) 6¼ Ptest (y)

Correct Answer: The correct answer is option a. Option b
corresponds to a change in the distribution of features.
Option c corresponds to a change in the association
between features and outcome. Option d corresponds to
a change in the distribution of outcome. Only option a
corresponds to a change in the joint distribution of
features and outcome.
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