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Abstract Objectives Artificial intelligence (AI)-based clinical decision support systems (CDSS)
have been developed to solve medical problems and enhance health care manage-
ment. We aimed to review the literature to identify trends and applications of AI
algorithms in CDSS for internal medicine subspecialties.
Methods A scoping review was conducted in PubMed, IEEE Xplore, and Scopus to
determine articles related to CDSS using AI algorithms that use deep learning, machine
learning, and pattern recognition. This review synthesized the main purposes of CDSS,
types of AI algorithms, and overall accuracy of algorithms. We searched the original
research published in English between 2009 and 2019.
Results Given the volume of articles meeting inclusion criteria, the results of 218 of
the 3,467 articles were analyzed and presented in this review. These 218 articles were
related to AI-based CDSS for internal medicine subspecialties: neurocritical care
(n¼89), cardiovascular disease (n¼79), and medical oncology (n¼50). We found
that themain purposes of CDSSwere prediction (48.4%) and diagnosis (47.1%). The five
most common algorithms include: support vector machine (20.9%), neural network
(14.6%), random forest (10.5%), deep learning (9.2%), and decision tree (8.8%). The
accuracy ranges of algorithms were 61.8 to 100% in neurocritical care, 61.6 to 100% in
cardiovascular disease, and 54 to 100% in medical oncology. Only 20.1% of those
algorithms had an explainability of AI, which provides the results of the solution that
humans can understand.
Conclusion More AI algorithms are applied in CDSS and are important in improving
clinical practice. Supervised learning still accounts for a majority of AI applications in
internal medicine. This study identified four potential gaps: the need for AI explain-
ability, the lack of ubiquity of CDSS, the narrow scope of target users of CDSS, and the
need for AI in health care report standards.
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Background and Significance

Clinical Decision Support Systems
According to the Office of theNational Coordinator for Health
Information Technology, “clinical decision support (CDS)
provides clinicians, staff, patients, or other individuals
with knowledge and person-specific information, intelli-
gently filtered or presented at appropriate times, to enhance
health and health care.”1 CDS can be used on a variety of tools
and systems for clinical decision-making. Examples of CDS
tools include alerts, reminders, clinical guidelines, recom-
mendations, condition-specific order sets, data reports, doc-
umentation templates, diagnostic support, and databases.2

CDS systems (CDSS) are computerized tools to help clinicians
make clinical decisions and manage information.3 Examples
of CDSS include automated laboratory alerting systems that
help the user focus on key messages such as highlighting
abnormal laboratory values,4 and pharmacy information
systems that provide alerts for drug allergies or interac-
tions.5 Advanced CDSS delivers more accurate information
to clinicians, for instance, personalized drug dosage calcu-
lators, case-based recommendations, and suggestions for
laboratory testing based on diseases. Because of the rapid
growth of electronic health records (EHR), CDSS has been
increasingly integrated in the EHR system and the existing
workflow that the clinician can efficiently receive and act on
system generated recommendations.6 To manage a large
amount of clinical data and effectively transform health
care systems, artificial intelligence (AI) andmachine learning
(ML) have been applied to computerized CDSS.7–9

Artificial Intelligence
AI was defined in 1955 by JohnMcCarthy as “the science and
engineering ofmaking intelligentmachines,”which has been
designed to resolve complex challenges and hopefully some-
day will be as intelligent as humans.10 The first introduction
of AI in health care was in the 1970s at Stanford University,
California. They developed the MYCIN rule-based system to
advise physicians regarding antimicrobial therapy. The
MYCIN suggested possible pathogens and recommended a
dosage of antibiotics based on body weight.11,12

ML is a subset of AI defined as “the field of study that gives
computers the ability to learn without being explicitly
programmed” by Arthur Samuel.13 ML algorithms have
four types: supervised learning, unsupervised learning,
semisupervised learning, and reinforcement learning. Using
data containing both inputs and target outcomes, supervised
learning algorithms build a model. Conversely, unsupervised
learning algorithms use data that contain only inputs to find
the structure or pattern of the data. Semisupervised learning
is an algorithmmixed between supervised and unsupervised
learning algorithms to improve the accuracy of the model.14

Reinforcement learning does not require input/output pairs,
and it focuses on a tradeoff between exploration and exploi-
tation.15 ML models learn from training data to detect or
predict outcomes with high accuracy. ML supports clinical
work in prognosis, diagnosis, treatment, and clinical work-
flow.14 For example, ML was widely used in studies predict-

ing hospital readmission to reduce the payment for patients
readmitted within 30 days of discharge. The most utilized
algorithms in these studies were decision tree (DT)-based
methods and support vector machine (SVM).16

Deep learning (DL) is a subset of ML that consists of
layered sets of algorithms to progressively extract higher-
level features from the raw input, inspired by neural net-
works (NN) of the human brain. The representation of one
layer starting with the raw data input is fed and transformed
into the next layer representation that enables learning
highly complex functions.17 DL works very well at discover-
ing complex structures in high-dimensional data in medi-
cine. For example, DL was used to identify malignancy from
pictures of skin lesions,18 detecting pneumonia from chest
radiographs,19,20 and diagnosing diabetic retinopathy based
on retinal photographs.21 These studies demonstrate that
combining advanced computational methodologies with
CDSS may reduce medical errors and improve care
processes.6,22–24

Explainable Artificial Intelligence
Explainable AI (XAI) was defined by Matt Turek from the
Defense Advanced Research Projects Agency XAI program.
Turek claims, “XAI proposes creating a suite ofML techniques
that (1) produces more explainable models while maintain-
ing a high level of learning performance (prediction accura-
cy) and (2) enables human users to understand,
appropriately trust, and effectively manage the emerging
generation of artificially intelligent partners.25” Many ML
algorithms could not explain howandwhya specific decision
has been made. Thus, it raised the question: how can we
make ML algorithms explainable? In 2018, the European
Union General Data Protection Regulation discussed how to
explain AI algorithms, and this discussion led to a debate
among AI researchers regarding the “right to explanation.”26

The right to explanation is a right to be given an explanation
for the output of the algorithm. Because many AI algorithms,
such as the output of the deep NN, are not easily explainable,
XAI becomes more important and seeks to provide an
explanation from AI algorithms. The explainability of AI
could help to enhance the trust of AI-based systems from
medical professionals.27 Thus, AI-based CDSS requires not
only good performance but also explainability that is trust-
worthy, transparent, and interpretable.28

To analyze the explainability of AI-based CDSS, we can
consider four perspectives from a multidisciplinary ap-
proach: technological, legal, medical, and patient perspec-
tives.29 The technological perspective considers the
explainability of the model by characteristics of the algo-
rithm. From the legal perspective, there are three issues
needed to be considered for explainability: (1) informed
consent, (2) certification and approval as medical devices
from the Food and Drug Administration (FDA),30 and (3)
liability. Using unexplainable AI algorithms in CDSS for
medical purposes has been controlled by the FDA; hence,
it would affect the trend of using XAI and AI in the future.
From the medical perspective, AI-based CDSSwill be consid-
ered two levels of explainability: understanding the output
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from the system and identifying feature importance. Last,
from the patient perspective, explainability can provide per-
sonalized recommendations based on the patient’s character-
istics and risk factors. XAI-based CDSS could enhance patient
engagement and provide an accurate risk perception.31,32

AI in Internal Medicine
In medicine, AI is widely used to understand medical con-
ditions, to predict diagnoses, to process extensive health
data, and to aid physicians in making clinical decisions.33

Examples of the current systems include IBM’s Watson
Health solutions34 for the field of Clinical Medicine and
MeVismedical solutions35 for oncological radiology. Internal
medicine is a medical specialty dealing with diagnosis,
treatment, and prevention of adult diseases.36 Internal med-
icine specialty has 20 subspecialties37 and has the largest
number of active physicians in the United States.38

For the field of neurovascular disorders, Murray et al39

reviewed the literature on acute stroke diagnostic-focused AI
from 2014 to 2019 using the search terms: “artificial intelli-
gence” or “machine learning or deep learning” and “ischemic
stroke” or “large vessel occlusion.”A total of 20 studies were
identified, and the results show that random forest (RF)
learning was used for the Alberta Stroke Program Early
Computerized Tomography (CT) Score. In contrast, convolu-
tional NNwere used for detecting large vessel occlusions. The
authors also identified platforms, including Brainomix, Gen-
eral Electric, iSchemaView, and Viz.ai. The authors suggested
that AI improves stroke detection; however, the standardi-
zation of performance assessment is required.

For the field of cardiovascular diseases, Kilic40 reviewed
articles related to AI, ML, and cardiovascular health care that
were published up to 2019. The author categorized ML
algorithms into two major types, namely, supervised and
unsupervised learning algorithms. Supervised learning algo-
rithms include the Naïve Bayes theorem (NB), k-nearest
neighbors, SVM, RF, extreme gradient boosting, and DT.
Unsupervised learning algorithms include k-mean cluster-
ing, hierarchical clustering, principal component analysis,
and singular value decomposition. The author summarized
the potential application of ML in cardiovascular health care
into three groups: (1) automated imaging interpretation, (2)
natural language processing from EHR, and (3) predictive
analytics. The author mentioned the challenges of imple-
menting ML into clinical practice, including unexplainable
results, privacy and ethical issues, validation and long-term
evaluation, and the need for a large amount of data.

For an example of applied AI in the field of oncology, Jin
et al41 conducted a systematic review on AI in gastric cancer
using the search terms: “artificial intelligence” and “gastric
cancer,” and a total of 68 studies were included. The study
reported that AI was used for omic data analyses, the
identification of Helicobacter pylori infection and chronic
atrophic gastritis, endoscopic diagnosis for gastric cancer,
invasion depth prediction, digital pathology, bleeding detec-
tion, surgery (preoperative, intraoperative, and postopera-
tive procedures), metastases and staging prediction, and
prognosis prediction. The authors also grouped AI applica-

tions in gastric cancer, as mentioned above, into detection,
treatment, and prognosis. The authors suggested that large
randomized controlled trials (RCTs) are required to validate
the AImodels. However, it is difficult to conduct large RCTs in
the rapidly changing environment of an EHR due to costs,
interoperability, quality of data, and privacy and data secu-
rity considerations.42–44

After reviewing several systematic reviews of AI in medi-
cine, we concluded that AI applications in medicine could be
grouped as prognosis/prediction, diagnosis/detection, treat-
ment, and clinical workflow. Current ML implementation in
clinical practice lacks the explainability of AI. Last, there is a
need for the standardization to validate clinical performance
of AI applications.

Objectives

There were many systematic review studies related to AI in
Medicine. However, few studies reported the frequency and
explainability of AI algorithms used in CDSS. We aimed to
extract key information to identify a potential gap for further
study.

In this study,we conducted a scoping reviewof literature in
the past decade to analyze the implementation of appliedAI in
CDSS for subspecialties in internal medicine. Subspecialties in
this study refer to the additional training to “subspecialize” in
additional areas of internal medicine.37 We aimed to answer
three research questions (RQs), which are:

(RQ1) What is the frequency of applications regarding
purposes of CDSS among prediction, diagnosis, treatment
optimization, and clinical workflow optimization?

(RQ2) What is the frequency of applications regarding AI
algorithms used in CDSS?

(RQ3) What is the overall accuracy of those algorithms?

Methods

Inclusion and Exclusion Criteria
Articles were included if they met the following criteria: (1)
addressed CDSS using AI algorithms; (2) the AI algorithms
studied include DL, ML, or automated pattern recognition;
(3) they were related to the internal medicine specialty; (4)
they were published between January 1, 2009 and Decem-
ber 31, 2019; (5) they were published in English; and (6)
were original research.

We excluded articles using natural language or text
processing that did not use AI algorithms. We also excluded
articles proposing a new platform of CDSSwithout reporting
results, technical reports of new algorithms without appli-
cations in medical research, and review papers.

Search Strategy
We searched three databases, including PubMed, IEEE
Xplore, and Scopus, using the combination of search terms:
“Clinical Decision Support Systems” AND (“Artificial Intelli-
gence” OR “Deep Learning” OR “Machine Learning” OR
“Automated Pattern Recognition”) and limited results from
January 1, 2009 to December 31, 2019. We included
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automated pattern recognition in our search terms because
pattern recognition is interchangeably used for ML.45 We
limited results from 2009 to 2019 because Meaningful Use
introduced in 2009 in the United States promoted the
electronic exchange of health information via certified EHR
technology.46,47

Study Selection
First, we reviewed the literature by screening the titles and
abstracts and classified each paper as relevant, not relevant, or
unclear. Second, the unclear category was revisited by reading
the full-text and re-categorizing it as relevant or not relevant.
Third, the full-text articles were read and key informationwas
extracted. Those articles that met the inclusion criteria were
included in the final set of articles. Last, we categorized all
included articles into different internal medicine subspecial-
ties including neurocritical care, cardiovascular disease, med-
ical oncology, infectious disease, endocrinology, diabetes, and
metabolism, critical care medicine, nephrology, gastroenter-
ology, pulmonary disease, hematology, rheumatology, allergy
and immunology, andgeriatricmedicine.Weexcludedarticles
related to other medical areas, including anesthesiology, der-
matology, emergency medicine, obstetrics and gynecology,
ophthalmology, orthopedic surgery, otolaryngology-head and
neck surgery, pathology, pediatrics, physical medicine and
rehabilitation, preventive medicine, psychiatry and neurocrit-
ical care, radiology, surgery, thoracic surgery, urology, ortho-
dontics, and pharmacology from our review. Disagreements
on inclusion, exclusion, and information extraction were
resolved by consensus-based discussion among three authors
(P.N., M.S.K. and S.A.B).

Data Extraction and Analysis
Key information was extracted from all articles by P.N.
(►Appendix A). The characteristics of articles included pub-
lication year, author, journal title, article title, study design
(observational and experimental studies), purpose, decision,
input data (a type of data, number of cases, and period of
study), primary algorithms, comparison methods, balancing
technique, explainability, accuracy, users, and ubiquity. The
primary purpose of CDSS functions were categorized into
four groups: prediction, diagnosis, treatment optimization,
and clinical workflow optimization.14 XAI was determined
from the included articles. If their methodology used an AI
algorithm that maintained a high level of learning perfor-
mance (prediction accuracy) and enabled human users to
understand, appropriately trust, and effectively manage the
emerging generation of AI partners,25 we classified it as
“explainable.” Otherwise, they were categorized as “unex-
plainable.” In ►Table 1, P.N. and M.S.K. categorized those AI
algorithms into four types: supervised ML, semisupervised
ML, unsupervised ML, and DL.

Results

Identification of Eligible Articles
Our systematic searches identified 4,101 articles. Therewere
634 duplicate articles removed. The remaining 3,467 articles

were screened using the inclusion criteria by titles, abstracts,
and keywords.We excluded 1,973 articles based on exclusion
criteria, which are articles proposing a new platform of CDSS
without reporting results, technical reports of new algo-
rithms without applications in medical research, and review
papers. A full-text article assessment was conducted of 1,261
articles for eligibility. We removed 820 articles that were not
related to the internal medicine specialty (►Fig. 1). Out of
441 eligible articles, we considered the top three subspe-
cialties composing 49.4% in internal medicine-related
articles, which were neurocritical care (n¼89), cardiovascu-
lar disease (n¼79), and medical oncology (n¼50)
(►Table 2). A total of 218 articles for these three subspe-
cialties were further analyzed, and information was
extracted to answer our RQ.

Purposes, AI Algorithms, Explainability of AI, and
Target Users of CDSS
We used ►Table 3 to categorize CDSS into four groups based
on the primary purpose of CDSS functions14: prediction,

Table 1 Categorization of AI algorithms

Types of AI
algorithms

Algorithms

Supervised
machine
learning

• Support vector machine (SVM)
• Decision tree (DT)
• Various types of neural network (NN)
• Regression
• Random forest (RF)
• Classifiers
• k-Nearest neighbors (kNN)
• Bayesian network (BN)
• Naïve Bayes (NB)
• Gradient boosting machine (GBM)
• Fuzzy classifier
• Genetic algorithm

Semisupervised
machine
learning

• Spectral regression Kernel
discriminant analysis with
semisupervised learning

Unsupervised
machine
learning

• Clustering
• Text mining
• Knowledge discovery
• Rule-based reasoning

(RBR)/case-based reasoning
(CBR)/guideline-based

• Various types of neural
networks (NN)

Deep learning • Deep NN (DNN)
• Convolutional neural network (CNN)
• Deep CNN
• 3D CNN
• Convolutional U-net with a
two-dimensional gated recurrent
NN (RNN)

• Autoencoder network
• CNN long-short-term memory (LSTM)
• Hidden Markov Model, stacked
denoising autoencoder, and Statistical
Language Modeling
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diagnosis, treatment optimization, and clinical workflow
optimization. The two most common purposes of CDSS
were prediction (107, 48.4%) and diagnosis (104, 47.1%). In
cardiovascular disease andmedical oncology, CDSSwas used
for the prediction of 57.5 and 58.8%, respectively. Conversely,

CDSS in neurocritical care focused on diagnosis more than
others (56, 62.2%).

For AI algorithms (►Table 3), generally, the top five
common algorithms were SVM (50, 20.9%), NN (35, 14.6%),
RF (25, 10.5%), DL (22, 9.2%), and DT (21, 8.8%). Regarding the
neurocritical care subspecialty, the top five common algo-
rithms were SVM (23, 23.5%), DL (12, 12.2%), RF (11, 11.2%),
NN (10, 10.2%), and DT (10, 10.2%). Regarding the cardiovas-
cular disease subspecialty, the top five common algorithms
were SVM (16, 19.0%), NN (13, 15.5%), RF (11, 13.2%), others
(9, 10.7%), and DT (8, 9.5%). The common algorithms of the
medical oncology subspecialty were NN (12, 21.1%), SVM
(11, 19.3%), DL (9, 15.8%), RBR (rule-based reasoning)/CBR
(case-based reasoning)/guideline-based (5, 8.8%), Bayesian
network (4, 7.0%), and NB (4, 7.0%).

AI algorithms applied to CDSS for subspecialties in medi-
cine had a wide range covering supervised ML, semisuper-
vised ML, unsupervised ML, and DL. Although DL is a part of
ML, we separated DL into a specific category because we
wanted to compare the prevalence of DL applications to
other types of algorithms. Of the 18 AI algorithms
in ►Table 3, 85.8% were supervised ML, of which 79.5% of
those algorithms were unexplainable AI. The majority of
CDSSwere developed for physician use (218, 96.9%), followed
by patient use (4, 1.8%) and nurse use (3, 1.3%).

The trend of using AI algorithms has been changing over
time, as shown in►Figs. 2 and 3.►Fig. 2 shows the number of
types of AI algorithms by year, and►Fig. 3 shows the number
offive commonAI algorithms: SVM,NN,RF,DT, andDLby year.
TheuseofML inCDSS increased fromtwoarticles in2009 to42
articles in2019.Specifically,DL algorithms, anewer technique,
showed a sharp increase in published articles in 2018 (n¼8)
and2019 (n¼8). In the neurocritical care research area, DLhas
been used earlier than cardiovascular disease and medical
oncology research areas for 2 years.

Answers to Research Questions
After synthesizing findings from 218 included articles, we
attempted to answer our RQs as follows:

• RQ1: What is the frequency of applications regarding
purposes of CDSS among prediction, diagnosis, treatment
optimization, and clinical workflow optimization?
We grouped the purposes of CDSS into four categories:
prediction, diagnosis, treatment optimization, and clini-
cal workflow optimization. This review showed that the
majority of CDSS were developed for prediction (48.4%)
and diagnosis (47.1%) purposes.

• RQ2: What is the frequency of applications regarding AI
algorithms used in CDSS?
There were wide ranges of AI algorithms used in medical
research. After categorization, we found 18 different types
of algorithms and the top five common algorithms among
all subspecialties were SVM (20.9%), NN (14.6%), RF
(10.5%), DL (9.2%), and DT (8.8%).
As the breadth of these data demonstrates, each model
has its pros and cons and is potentially suited for different
subspecialties (►Table 4). From our results, we found that

Fig. 1 Flow diagram of selecting studies for a scoping review.

Table 2 Number of studies in internal medicine subspecialties
(total¼441)

Subspecialties (n¼13) N

Neurocritical care 89

Cardiovascular disease 79

Medical oncology 50

Infectious disease 44

Endocrinology, diabetes, and metabolism 41

Critical care medicine 31

Nephrology 27

Gastroenterology 26

Pulmonary disease 24

Hematology 17

Rheumatology 5

Allergy and immunology 4

Geriatric medicine 4
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SVM and NN were common among those three subspe-
cialties. The reason could be that SVM can handle multi-
ple-class classification and small datasets. Moreover, SVM
and NN are easier to use for prediction or classification

and more stable than DT. However, the results from SVM
and NN can be hard to explain. We also found that DL is
more prevalent in neurocritical care and medical oncolo-
gy than in cardiovascular disease.

Table 3 Characteristics of the reviewed literature

Total
(n¼ 218)

Neurocritical
care
(n¼ 89)

Cardiovascular
disease
(n¼ 79)

Medical oncol-
ogy
(n¼50)

n % n % n % N %

Purposes (n¼ 221)

Prediction 107 48.4% 31 34.4% 46 57.5% 30 58.8%

Diagnosis 104 47.1% 56 62.2% 30 37.5% 18 35.3%

Treatment optimization 7 3.2% 3 3.3% 1 1.3% 3 5.9%

Clinical workflow optimization 3 1.4% 0 0.0% 3 3.8% 0 0.0%

Algorithms (n¼ 239)

SVM 50 20.9% 23 23.5% 16 19.0% 11 19.3%

NN 35 14.6% 10 10.2% 13 15.5% 12 21.1%

RF 25 10.5% 11 11.2% 11 13.1% 3 5.3%

DL 22 9.2% 12 12.2% 1 1.2% 9 15.8%

DT 21 8.8% 10 10.2% 8 9.5% 3 5.3%

Others 17 7.1% 7 7.1% 9 10.7% 1 1.8%

Classifiers 10 4.2% 3 3.1% 6 7.1% 1 1.8%

RBR/CBR/guideline-based 10 4.2% 3 3.1% 2 2.4% 5 8.8%

kNN 9 3.8% 5 5.1% 3 3.6% 1 1.8%

BN 9 3.8% 2 2.0% 3 3.6% 4 7.0%

Regression 8 3.3% 5 5.1% 2 2.4% 1 1.8%

NB 8 3.3% 1 1.0% 3 3.6% 4 7.0%

Fuzzy 6 2.5% 3 3.1% 2 2.4% 1 1.8%

Clustering 4 1.7% 2 2.0% 2 2.4% 0 0.0%

GBM 2 0.8% 0 0.0% 1 1.2% 1 1.8%

Text mining 1 0.4% 1 1.0% 0 0.0% 0 0.0%

Genetic algorithm 1 0.4% 0 0.0% 1 1.2% 0 0.0%

Knowledge discovery 1 0.4% 0 0.0% 1 1.2% 0 0.0%

Types of AI (n¼ 239)

Supervised ML 206 86.2% 78 79.6% 76 91.6% 52 91.2%

DL 16 6.7% 12 12.2% 1 1.2% 3 5.3%

Unsupervised ML 16 6.7% 7 7.1% 7 8.4% 2 3.5%

Semisupervised ML 1 0.4% 1 1.0% 0 0.0% 0 0.0%

Explainable AI

Unexplainable 174 79.5% 69 77.5% 69 87.3% 36 72.0%

Explainable 44 20.1% 20 22.5% 10 12.7% 14 28.0%

Users (n¼ 225)

Physician 218 96.9% 89 97.8% 79 95.2% 50 98.0%

Patient 4 1.8% 2 2.2% 1 1.2% 1 2.0%

Nurse 3 1.3% 0 0.0% 3 3.6% 0 0.0%

Abbreviations: AI, artificial intelligence; BN, Bayesian network; CBR, case-based reasoning; DL, deep learning; DT, decision tree; GBM, gradient
boosting machine; kNN, k-nearest neighbors; ML, machine learning; NB, naïve Bayes theorem; NN, neural network; RBR, rule-based reasoning; RF,
random forest; SVM, support vector machine.
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After further examination of the data modalities used in
the original studies, we found that, in neurocritical care,
several frequently applied data types are suitable for using
DL, such as intracranial electroencephalogram,48 facial
video clips,49 electroencephalogram,50–58 and magnetic
resonance imaging (MRI).59–70 Similarly, in medical on-
cology, the DL method is mostly applied to the image
data.71,72 This is reasonable as images are used more in
diagnosis in these two subspecialties than cardiovascular
disease, andDL is suited to the analysis of imagedata, such
as MRI, CT, positron emission tomography scans, and
ultrasound images.

• RQ3: What is the overall accuracy of those algorithms?
Accuracy is the percentage of correct predictions for the
input data and is calculated by the number of correct
predictions divided by the total number of predictions
made. In a simple way, accuracy is the percentage of our
model got right.73 The accuracy of CDSS should be tested
because inaccurate recommendations can endanger the
safety or well-being of patients.9 It is challenging to report
the average accuracy of AI algorithms because various
metrics have been used to measure accuracy in these
articles. For thearticles reporting accuracy scores,we found
that the accuracy ranges of AI algorithms in neurocritical
care, cardiovascular disease, medical oncologywere 61.8 to
100%, 61.6 to 100%, and 54 to 100%, respectively.

Because of the inconsistency in reporting results of indi-
vidual articles, it is particularly challenging to synthesize
and report the results from included articles. To address
this issue, Hernandez-Boussard et al74 presented MINi-
mum Information forMedical AI Reporting orMINIMAR to
standardize the report on AI in health care. The standard
report should satisfy four essential requirements: (1)
study population and setting, (2) patient demographic
characteristics, (3) model architecture, and (4) model
evaluation. The study population and setting include
population, study setting, data source, and cohort selec-
tion. The patient demographic characteristics are age, sex,
race, ethnicity, and socioeconomic status. For the model
architecture, researchers should report model output,
target user, data splitting, gold standard, model task,
model architecture, features, and missingness. The report
should include optimization, internal model validation,
external validation, and transparency for the model eval-
uation. This standard would help provide an accurate and
responsible report on AI in health care.

Discussion

Weconducted a scoping review tofind evidence of applied AI
algorithms in CDSS for internal medicine subspecialties.
Accordingly, our study found that neurocritical care,

Fig. 2 The number of types of AI algorithms by year. AI, artificial intelligence.
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Fig. 3 The number of AI algorithms by year. AI, artificial intelligence.

Table 4 Advantages and disadvantages of AI algorithms

Algorithms Advantages Disadvantages

Support vector machine102–107 • Binary or multiple-class classification
• Do not need a large dataset

• Difficult to pick kernel function/
parameters

• Difficult to explain
• Long-time training on a large dataset

Neural network108–110 • Able to do complex classification • Difficult to explain
• Difficult to tune parameters

Random forest111–114 • Able to deal with missing values
• Able to deal with high-dimension large dataset

• Difficult to explain
• Prone to have overfitting problem

Decision tree115–117 • Able to be explained
• Able to deal with complex data

• Unstable
• Accuracy not high

Deep learning17,118–120 • Able to do complex classification
• Could be expensive (graphics processing

unit needed)

• Difficult to explain
• Need large dataset
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cardiovascular disease, and medical oncology subspecialties
had the high volume of applied AI algorithms in CDSS
studies, approximately 49%. According to the World Health
Organization and the Centers for Disease Control and
Prevention, cardiovascular diseases were the first leading
cause of death, and neurological disorders were the second
leading cause of death worldwide.75–77 Cancer is a major
health problem worldwide and was the second leading
cause of death in the United States in 2019.78 This review
provided significant value regarding CDSS using AI algo-
rithms in internal medicine and globally major health
problems. The volume of applied AI algorithms to solve
medical problems has continuously increased from 2009 to
2019, with a substantial change in 2018 and 2019. We also
observed a significantly growing number of articles involv-
ing DL from 2016 to 2019.

Explainability of AI Algorithms
This review shows that most articles have used unexplain-
able algorithms (79.5%). The use of unexplainable AI models
has been debated and discussed in many articles, with an
ongoing controversy in currentmedical practices.Webelieve
that in the future, researchers shouldmove forward applying
XAI algorithms, which are AI algorithms that provide results
that are understood by human experts.25

AI explainability is examined primarily from a clinical
point of view, highlighting the ability of humans to under-
standwhich clinical characteristics drive the prediction. This
is important, as the main objective of clinical predictive
modeling is the development of CDSS, assisting health pro-
fessionals in their clinical decision-making, predicting diag-
noses, risks, and results.27,79 It is important to keep in mind
that the requirements for CDSS go far beyond the perfor-
mance of the model.80 It is established that CDSS for the
clinical environment needs to exhibit proven safety and
accuracy.80 The explainability of AI systems is crucial to
understandwhy they dowhat they do, butmore importantly,
to understand why and when they may not do what is
planned. This transparency is important in light of the
growing awareness of potential biases in the models used
for health discrimination. An XAI system is essential to
provide: a safe interpretation and verification of the results
acquired during development; better evaluation of the safety
and justice of medical products, especially concerning bias,
during the regulatory process; interpretation supported by
domain knowledge leading to increased confidence on the
part of doctors, other health professionals, and patients. The
explainability of AI can help to increase the confidence of
medical professionals in future AI systems.

Ubiquity and Usability
We identified information on developed CDSS for ubiquity,
i.e., if the CDSS are made to appear anytime and everywhere.
Some articles had developed ubiquity, such as software,
Web-based tools, and mobile apps. The ubiquity includes
neuroQWERTY platform,81 Heart Failure Manager tool,82

Chest Pain Rule Out (CPRO) Calculator,83 the HEARTFAID
platform,84 PaDEL-Survival,85 OncoMortality,86 PrediWeb,87

and The-Optimal-Lymph-Flow (TOLF).88 Most of the includ-
ed articles did not report about model applications.

In a CDSS, the outcome of the system can be related to the
user interface directly. A successful CDSS should offer an
efficient user interface to clinicians to get the most proper
consultation results.Miller et al89 described simplification as
including only the elements that are most important for
communication. Use of consistent terminology, concise and
unambiguous language, and effective visualization improved
usability and reduced information density. To improve us-
ability, it is suggested to consider using appropriate font
sizes, using meaningful colors, ensuring acceptable contrast
between the text and background, andmaking the icons bold
or larger. Space-filling techniques help to maximize the
amount of information that can be displayed in the available
display space. Visibility factors consider human factors and
cognitive computing. A user-centered design process also
should be considered during the CDSS development. The
user-centered design aims to create the system based on user
characteristics using interdisciplinary approaches of cogni-
tive science, psychology, and computer science.90,91 The
user-centered design helps identify the potential deficien-
cies of CDSS, such as substantial variability in the usability,
efficacy, and safety of CDSS.92–94

Study Limitations
Our study has several limitations. First, we conducted a
scoping review, which did not require an assessment of
methodological limitations or risk of bias of the evidence95;
however, we collected study design (►Appendix A), which
can provide the level of evidence of individual studies.
Second, we excluded non-English papers, which may consti-
tute a selection bias. Last, we limited the year of publications
based on EHR implementation in the United States and
associated applications of AI-based CDSS, which may lead
to publication bias. However, we believe that the findings of
our review were able to answer our RQ.

Conclusion

With the continued advancement of medical techniques and
devices, the size, variety, and complexity of data also contin-
ue to increase. ManyML and dataminingmethods have been
used in the medical field to help with disease diagnosis,
prediction, and treatment optimization. This demonstrates
that AI can provide more accurate diagnostic results. We
identified four potential research gaps to fill in from this
study. First, we found that only 44 articles (20.1%) of the
included articles have used XAI algorithms resulting in
distrust from clinicians because of the lack of effectiveness
and learning performance. We suggest future CDSS should
increase the utilization of XAI algorithms, which can help to
enhance trust and confidence in using the CDSS among
clinicians. Second, we found that there was a lack of ubiquity
among the reviewed articles. The CDSS should be available
for users anytime and anywhere tomake clinical decisions at
the point of care; however, only 21 articles (9.6%) developed
platforms (i.e., software, web-based tools, and mobile apps)
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that clinicians and patients can access. Most of the articles
did not report the platform development or implementation.
We suggest future CDSS should consider not only the model
performance but also ubiquity improvement. The ubiquity
will increase accessibility for clinicians and patients and lead
to opportune use of CDSS in clinical practice. Third, the
majority of CDSS were developed for physician users
(96.9%). Developers should consider expanding the scope
of target users and enhancing engagement in shared deci-
sion-making among health care providers and patients to
achieve the delivery of patient-centered care. Last, we ob-
served a lack of standardized reporting structure in AI-based
CDSS that resulted in inconsistent data extraction. The
reviewed articles did not follow the MINIMAR standards
when they reported information and failed to provide an
accurate, unbiased, and meaningful report. We suggest fu-
ture articles related to AI in health care should report
information following the MINIMAR standards.

Although there are many studies showing the success of
using CDSS in health care management, implementation is a
significant challenge because of unreliability and inability to
exchange EHR data between systems, unfriendly user inter-
faces, limited choices of implementation and workflow, and
technical issues.96,97 Moreover, in the real world, EHR data
can be inaccurate, unreliable, transformed, and insuffi-
cient.98–101 Hence, the quality of data is an important
challenge for applied AI in medicine.

Clinical Relevance Statement

This scoping review showed the trends of utilizing AI algo-
rithms in CDSS for subspecialties in internal medicine be-
tween 2009 and 2019. Themost frequent numbers of articles
related to CDSS using AI algorithms among internalmedicine
subspecialties were neurocritical care, cardiovascular dis-
ease, and medical oncology. This review showed a substan-
tial change in utilizing DL in published articles in 2018 and
2019. This review indicated four potential gaps of CDSS
development: the need for AI explainability, the lack of
ubiquity of CDSS, the narrow scope of target users, and the
need for AI in health care report standards.
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