CT Appearances in Treated Abdominal Tuberculosis: A Radiologist’s Dilemma

Vinita Rathi1 Varun Yadav2 Bonny S. Deep2,3 Shuchi Bhatt2 Subhash Giri4

1 Department of Radio Diagnosis, University College of Medical Sciences & GTB Hospital, Dilshad Garden, Delhi, India
2 Department of Radio diagnosis, University College of Medical Sciences, Delhi, India
3 Department of Radio diagnosis, All India Institute of Medical Sciences, New Delhi, India
4 Department of Medicine, University College of Medical Sciences & GTB Hospital, Dilshad Garden, Delhi, India

Address for correspondence Vinita Rathi, MD, 89/2 Radhey Puri Extension – II, Delhi 110051, India (e-mail: vineetarathi@yahoo.com).

Introduction

Patients who have completed antitubercular therapy (ATT) for abdominal tuberculosis (TB) may present for CT scan of the abdomen several months or years later for various abdominal complaints. Their CT scan may show ileocecal wall-thickening with irregularity of walls, contracted cecum, enhancement of walls of cecum and/terminal ileum, pulled-up ileocecal junction, large noncalcified, matted or necrotic lymph nodes, hypodense lesions in the liver/and spleen, partial strictures in jejunum/ileum, etc. It is very difficult to decide whether these lesions are the cause of the patient’s presenting problems or represent healed TB.

It is also possible that due to the presence of these changes, an occult cause of abdominal complaints, that is, some new disease entity, is overlooked. This may create problems in the management of patients. Such patients may be restarted on ATT or may even undergo unnecessary bowel surgery like resection and anastomosis. Subsequent postoperative complications may lead to a lifelong dilemma, irrespective of whether the surgery was actually required.
Although there are innumerable studies in literature on sonographic and CT appearances in abdominal TB, there is paucity of literature regarding CT appearances in healed abdominal TB, and it is mostly anecdotal. Ma et al have explored the roles of CT enterography and gastrointestinal ultrasound in the evaluation of ATT response to intestinal TB retrospectively.

The purpose of this prospective study is to create a database of CT appearances of the abdomen after completion of ATT.

Methods

An observational pilot study was performed in the Department of Radio Diagnosis, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi, from December 2013 to March 2015 among 20 adult patients who had completed a course of ATT for abdominal TB. These patients were deemed to have been completely treated for abdominal TB by the physicians. Medical records were perused during this period to select those patients who had positive findings on CT and/or sonography before ATT had been started. Cases with genitourinary tract TB were excluded from the study.

Definitive tissue diagnosis in the form of caseating granulomas in mesenteric nodes on fine needle aspiration cytology or on diagnostic laparoscopy was the basis of starting ATT in all the cases.

As much as 80% (16 out of 20) of cases had taken a 6-month course of ATT (category I—isoniazid [5 mg/kg], rifampicin [10 mg/kg], pyrazinamide [25 mg/kg], and ethambutol [15 mg/kg]), while a 9-month course of the same drugs was received in 20% (4 out of 20) cases. The acquisition of CT scan abdomen was done within 1 month of completing ATT in all the cases. After clearance from the Institutional Ethics Committee and written informed consent obtained from all the individual participants of the study, the patients underwent a noncontrast and contrast-enhanced CT scan (CECT) of the abdomen on a 64 slice Multidetector CT scanner (Somatom Definition AS – Siemens AG, Germany). CT appearances of the ileocecal region and other bowel changes, lymph node status, peritoneal changes, and solid organ involvement were recorded.

Patients were fasting for 6 hours and were encouraged to drink 1.5 to 2.0 L of 2.5% mannitol solution over 45 to 60 minutes. CECT scan of the abdomen was performed after injection of 80 to 100 mL nonionic water-soluble iodinated contrast (300 mgI/mL) was injected intravenously (IV) at 3 mL/sec. Scanning was done after a delay of 50 seconds. Axial scans were taken at appropriate kV and mAs and slice thickness of 5.0 mm. Thin axial reconstructions of slice thickness 1.0 to 3.0 mm and multiplanar reconstructions were done in the coronal, sagittal, and oblique planes.

Three appropriate axial sections for measurement of the bowel wall thickness and attenuation were selected subjectively while scrolling the axial CT images on the workstation. The maximum bowel wall thickness and attenuation was measured in the three representative axial scans, and their mean was calculated. The average wall thickness and attenuation was also taken as a mean value of three selected axial sections. Cursors were used to measure the wall thickness, and pixel lens was used for estimating the attenuation values.

CT findings were compared with previous (pretreatment) CT scans in 7 patients. All 20 cases of treated abdominal TB were followed-up clinically till the end of the study period (15 months).

Statistical Analysis

All the CT scan findings were converted into a computer-based spreadsheet. Descriptive statistics were used and reported as percentages. Posttreatment observations were compared in cases with and without ileocecal involvement, using Wilcoxon signed ranks test at 5% level of significance.

Results

Age of the patients ranged from 18 to 47 years. The mean age being 29.55 years. As much as 75% of cases (15 out of 20) in our study were males and 25% were females. All the cases were asymptomatic at the time of CT scan. On enquiry, we found there was a past history of abdominal pain, anorexia, weight loss, fever, and abdominal distension—the most common clinical symptoms for which the patients received ATT. Symptoms had been present for an average duration of 2 to 4 weeks before ATT was started.

Before starting ATT, all 20 cases had undergone abdominal sonography. Seven cases with ileocecal involvement on sonography had also undergone abdominal CT scan.

The CT findings of the ileocecal region of bowel after completing ATT are shown in Table 1. The CT appearances of abdominal lymph nodes in these 20 cases on CT scan are listed in Table 3.

Cecum was high in position in 65% (13 out of 20) cases after ATT, but it was normally positioned in the right iliac fossa (RIF) in 35% (7 out of 20) cases. Cecum was well-distended in more than 70% cases in our study.

Maximum cecal wall thickness was in the normal range (<3.0 mm) in 60% cases of treated abdominal TB. As much as 80% patients had an average cecal wall thickness of 1.0 to 3.0 mm.

Cecal wall thickening was found to be asymmetrical after completing ATT but no cecal wall calcification or fatty attenuation was seen in any case of treated abdominal TB. Pericecal fat stranding was seen in 4 out of 20 cases.

In 90% cases, the terminal ileal luminal diameter was normal after completing ATT.

In 70% cases of treated abdominal TB, maximum terminal ileal wall thickness was normal, while in 30% cases, it was increased. In 85% cases of treated abdominal TB, the average terminal ileal wall thickness was normal. Other bowel findings in treated abdominal TB included partial strictures in 2 cases, segmental dilatation and wall thickening in a loop of distal ileum in 3 cases, and enteroliths in 2 cases.

Peritoneal changes like combination of patchy peritoneal thickening mesenteric fat stranding nodularity hypervascularity and omental stranding hypervascularity nodules
were noted in 50% cases of treated cases of abdominal TB. Ascites was seen in 2 cases. Solid organ involvement was seen in the form of two small subcentimetric, rounded, ill-defined, hypodense lesions in liver and spleen and mild hepatosplenomegaly in a total of 4 cases.

Follow-Up
The period of clinical follow up ranged from 1.5 to 15 months in our study. In 17 out of 20 cases, follow-up was possible for 3 to 15 months. All the 20 cases remained asymptomatic in the follow-up period with no complaints of abdominal pain, fever, vomiting, anorexia, weight loss, etc. No new complaints were reported. In fact, a few cases reported weight gain.

Statistical Analysis
The average and maximum cecal wall thickness, maximum wall enhancement and average attenuation values of cecal wall were significantly higher in cases with pre-ATT ileocecal involvement ($p < 0.05$). No significant difference was observed in cecal luminal diameter in treated TB cases with and without pre-ATT ileocecal involvement ($p > 0.05$).

The maximum terminal ileum wall thickness, the maximum terminal ileum wall thickness and the average wall thickness in treated abdominal TB was significantly higher in cases with pre-ATT ileocecal involvement ($p < 0.05$). No significant difference was observed in the maximum or average postcontrast terminal ileal wall attenuation in treated abdominal TB cases, with and without ileocecal involvement ($p > 0.05$).

Discussion
The rationale of this study was to create a database of the CT abdomen appearances in patients of abdominal TB, who have been declared adequately treated by a qualified medical practitioner, so that changes of treated tubercular infection are not confused with recent disease.

Table 1 Bowel CT parameters in treated abdominal TB

<table>
<thead>
<tr>
<th>S. no.</th>
<th>Bowel CT parameters</th>
<th>Treated cases of TB ($n = 20$)</th>
<th>With pre-ATT ileocecal involvement ($n = 7$)</th>
<th>Without pre-ATT ileocecal involvement ($n = 13$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>Range</td>
<td>Mean</td>
</tr>
<tr>
<td>1.</td>
<td>Cecal lumen diameter</td>
<td>2.7 – 5.5 cm</td>
<td>3.5 – 5.5 cm</td>
<td>2.7 – 5.3 cm</td>
</tr>
<tr>
<td>2.</td>
<td>Maximum cecal wall thickness</td>
<td>3.1 mm</td>
<td>1.2 – 8.0 mm</td>
<td>2.0 – 6.0 mm</td>
</tr>
<tr>
<td>3.</td>
<td>Average cecal wall thickness</td>
<td>0.9 – 5.0 mm</td>
<td>1.8 – 5.0 mm</td>
<td>0.9 – 2.7 mm</td>
</tr>
<tr>
<td>4.</td>
<td>Maximum cecal wall enhancement</td>
<td>64 HU</td>
<td>41 – 111 HU</td>
<td>41 – 102 HU</td>
</tr>
<tr>
<td>5.</td>
<td>Average cecal wall enhancement</td>
<td>46 HU</td>
<td>30 – 92 HU</td>
<td>30 – 92 HU</td>
</tr>
<tr>
<td>6.</td>
<td>Terminal ileal lumen diameter</td>
<td>1.9 cm</td>
<td>0.9 – 3.5 cm</td>
<td>1.3 – 3.5 cm</td>
</tr>
<tr>
<td>7.</td>
<td>Maximum terminal ileal wall thickness</td>
<td>2.9 mm</td>
<td>0.7 – 8.4 mm</td>
<td>1.2 – 8.4 mm</td>
</tr>
<tr>
<td>8.</td>
<td>Average terminal ileal wall thickness</td>
<td>0.5 – 5.5 mm</td>
<td>0.9 – 5.5 mm</td>
<td>0.5 – 2.8 mm</td>
</tr>
<tr>
<td>10.</td>
<td>Average terminal ileal wall enhancement</td>
<td>59 HU</td>
<td>32 – 100 HU</td>
<td>32 – 100 HU</td>
</tr>
</tbody>
</table>

Table 2 Distribution of bowel CT parameters in treated TB

<table>
<thead>
<tr>
<th>S. no.</th>
<th>CT bowel parameter</th>
<th>With pre-ATT ileocecal involvement ($n = 7$)</th>
<th>Without pre-ATT ileocecal involvement ($n = 13$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Position of cecum and ileocecal junction</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Normal</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>2.</td>
<td>Maximum cecal wall thickness > 3.0 mm</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3.</td>
<td>Average cecal wall thickness > 3.0 mm</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>Ileocecal junction thickening</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5.</td>
<td>Terminal ileal wall thickness high, i.e., > 5.0 mm</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>6.</td>
<td>Average terminal ileal wall thickness high > 5.0 mm</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Abbreviations: ATT, antitubercular therapy; TB, tuberculosis.
ATT ileocecal involvement was also signific

and distinguishing between healed or active ileocecal TB. Of abdomen, and its high position in the RIF does not

larly, the average cecal wall thickness (1.8

cecal involvement (1.2

parameters in treated cases of abdominal TB.

study to objectively assess various bowel wall and nodal

having ileocecal involvement before starting ATT. Thus, the

involvement before starting ATT and in 57% (4 out of 7) cases

69% (9 out of 13) cases of treated TB, having no ileocecal

ileocecal junction after completing ATT in all the seven cases.

There was no change in the position of the cecum and

normally positioned in the RIF after completing ATT, while in

cases with ileocecal TB, cecum and ileocecal junction were

after administration of 1 to 1.5 L of oral mannitol. In 3 out of 7

cases with ileocecal TB, cecum and ileocecal junction were

normally positioned in the right flank of abdomen, and its high position in the RIF does not
distinguish between healed or active ileocecal TB.

After completing ATT, the maximum cecal wall thickness

was increased on CT scan (≥ or = 3.0 mm) in 85.7% (6 out of 7)
treated cases of ileocecal TB and also in 2 out of 13 cases with

no pre-ATT ileocecal wall thickening. Probably in these latter
two cases (who had not undergone a CT scan prior to starting

ATT), cecal wall thickening was not well-delineated or

missed on sonography prior to starting ATT.

The maximum cecal wall thickness (2.0–6.0 mm) was

significantly higher in treated cases of TB with pre ATT

ileocecal involvement (p < 0.05) than those having no ileocecal

involvement (1.2–3.2 mm) before starting ATT. Similarly,

the average cecal wall thickness (1.8–5.0 mm) with pre

ATT ileocecal involvement was also significantly higher in

treated cases of TB (p < 0.05) than those having no pre-ATT

ileocecal involvement (0.9–2.7 mm). So, in our study, it was

observed that the maximum and average cecal wall thickness

can be increased in treated abdominal TB. Ma et al also found

thickened bowel wall in 13/18 patients after ATT.11

With regard to the maximum post contrast cecal wall

attenuation and the average cecal wall attenuation in treated

abdominal TB, there was no significant difference in the

range of attenuation values (p > 0.05) in cases with and

without pre-ATT ileocecal involvement (range 41–111

Hounsfield units [HU] and 30–92 HU, respectively). Hence,

it appears that marked wall enhancement persists in the

ileocecal region after completion of ATT. As all these cases

remained asymptomatic for 15 months after completing ATT,

contrast enhancement in the ileocecal region after complet-

ing ATT may not suggest active TB. Ma et al also opined that

abnormal bowel wall contrast enhancement persisted in

4/14 patients after ATT, although HU have not been men-

tioned in their article.11

Although TB is a benign disease, cecal wall thickening was

found to be asymmetrical in treated abdominal TB, probably

because there is unsynchronized healing of the bowel wall in

ulcerative, hypertrophic, and ulcerohypertrophic types of

TB.11 Pericecal fat stranding, present in 20% cases, apparently

does not indicate active inflammation.

In 3 out of 7 cases of treated TB, with ileocecal junction

thickening prior to starting ATT, ileocecal junction wall

thickening was persistent (►Fig. 1). However, it was also

seen in two more cases without pre-ATT ileocecal thickening.

These were probably missed on previous sonography studies

or may be the thickening was apparent due to suboptimal

distension of the ileocecal junction on CT scan.

As far as terminal ileal luminal diameter is concerned, in 2

cases with ileocecal involvement, the maximum terminal

ileal lumen diameter was increased, that is, 3.5 cm. In these

cases, the dilatation was present on CT scan prior to starting

ATT also (►Fig. 1).

In this study, the range of maximum terminal ileal wall

thickness was 0.7 mm to 8.4 mm with a mean of 2.9 mm.

Maximum terminal ileal wall thickness ranged from 1.2 mm
to 8.4 mm in cases with ileocecal involvement. No compara-
tive data are available for treated abdominal TB. On CT, the

<table>
<thead>
<tr>
<th>Lymph nodal region</th>
<th>Mesenteric</th>
<th>RIF</th>
<th>Periportal</th>
<th>Retroperitoneal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>20</td>
<td>10</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>Number of lymph nodes</td>
<td>2–36</td>
<td>1–6</td>
<td>1–4</td>
<td>3–34</td>
</tr>
<tr>
<td>Short axis diameter (mm)</td>
<td>4.0–21.0</td>
<td>3.6–9.4</td>
<td>6.0–33.8</td>
<td>3.0–25.0</td>
</tr>
<tr>
<td>Maximum dimension (mm) of largest node</td>
<td>4.2–33.0</td>
<td>5.5–15.0</td>
<td>8.6–38.8</td>
<td></td>
</tr>
<tr>
<td>Number of patients with matted lymph nodes</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Number of cases with homogenous contrast enhancement</td>
<td>13</td>
<td>7</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Number of cases with heterogenous contrast enhancement</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Number of cases with both homogenous and heterogenous enhancement</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Number of cases with central hypodensity and peripheral rim enhancement</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Postcontrast attenuation (HU)</td>
<td>21–150</td>
<td>22–155</td>
<td>41–103</td>
<td>33–128</td>
</tr>
<tr>
<td>Number of cases with lymph nodes showing calcification</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Abbreviations: RIF, right iliac fossa; TB, tuberculosis.
normal small bowel wall thickness measures 2 to 3 mm; a wall thicker than 4 mm is considered abnormal except in the terminal ileum, where 5 mm is considered the upper limit of normal. The maximum terminal ileal wall thickness was ≥ 5.0 mm in six treated abdominal TB cases. Among these, four cases had pre-ATT ileocecal involvement, and terminal ileum was thickened prior to starting ATT (Fig. 2). In two cases, the terminal ileal wall thickening may have been overlooked on sonography and no pre-ATT CT scan was available for review. Bowel distension was adequate in these two cases, hence collapsed bowel was not responsible for a fallacious impression of wall thickening. The maximum and average terminal ileal wall thickness were as high as 8.0 mm and 5.5 mm, respectively, in treated abdominal TB. On statistical analysis, the maximum and the average terminal ileal wall thickness was significantly higher in treated cases of abdominal tuberculosis with pre-ATT ileocecal involvement (p < 0.05).

Wall enhancement in the ileocecal junction region ranged from 30 to 99 HU after ATT. The maximum and the average postcontrast terminal ileal wall attenuation in treated abdominal TB ranged between 32 HU to 119 HU and showed no significant difference in cases with and without ileocecal involvement (p < 0.05; Fig. 2). No studies regarding CT attenuation values for bowel wall in TB are available in literature.

Dilatation of a long distal ileal segment and presence of enterolith within it was also seen after completion of ATT, although the patients were asymptomatic (Fig. 3).

Lymph Nodal Status on CT Scan in Cases Representing Healed Tuberculosis

As many as 12 out of 20, that is, 60% cases of abdominal TB in our study had only lymphadenopathy on sonography when ATT was started. After ATT completion, nodes were seen in mesentery (Fig. 4), including RIF, periportal region and retroperitoneal region, with size ranging from as small as 3.6 mm to as large as 33.8 mm in short axis diameter (Fig. 5).

Mesenteric lymph nodes persisted in all cases of treated abdominal TB. As much as 70% cases showed presence of retroperitoneal nodes. Thus, all cases with retroperitoneal nodes had mesenteric nodes as well. RIF nodes were noted in 50% cases, whereas periportal nodes were noted in 30% treated cases. Discrete as well as matted nodes were noted.
showing homogeneous, heterogeneous, or peripheral rim enhancement with central hypodensity; having attenuation values between 21HU to 114HU and very few showed calcification. As these cases were also asymptomatic in the follow up period of our study, it appears that presence of large, necrotic, enhancing or matted nodes does not indicate active TB. Ma et al observed that necrotic nodes persisted after ATT, but there was a significant decrease in enlarged mesenteric nodes.11

Limitation

A limitation of our study was that an objective assessment of bowel and lymph nodes was not possible in 7 cases in which pre-treatment and post-treatment CT scans were available, as cases were not stored in the hard disc memory and no CDs of the CT were available.

Conclusion

In treated ileocecal TB, ileocecal wall thickening and enhancement may persist on CECT abdomen. Distal ileal wall thickening, enhancement, luminal dilatation, partial strictures, and enteroliths may also persist following successful treatment of tubercular abdomen. Numerous, discrete or large matted nodes showing central necrosis/heterogeneous/homogeneous postcontrast enhancement can be seen in treated abdominal TB. Presence of these features in the abdominal CT scan of a

Fig. 3 (A) Coronal reformatted postcontrast CT image showing a long dilated distal ileal segment (arrow) prior to starting antitubercular therapy (ATT). (B) shows the same case with persistence of dilated distal ileal segment (maximum diameter of 6.4 cm) after ATT completion along with (C) enterolith (arrow) in distal ileum.

Fig. 4 Coronal reformatted postcontrast CT showing numerous discrete and matted homogeneously enhancing (arrows) subcentimetric mesenteric nodes.

Fig. 5 (A) Axial postcontrast CT scan images prior to starting antituberculcer therapy (ATT) shows matted, retroperitoneal lymphadenopathy (arrow). (B) Axial contrast-enhanced CT (CECT) shows reduction in their size (arrow) 1 month after completing ATT. (C) Coronal reconstruction of the same shows persistence of enlarged retroperitoneal nodes (arrow) after treatment.
patient with treated abdominal TB should not be confused with active TB and should not prevent the treating physicians from considering an alternative clinical diagnosis. The decision whether to reinstitute ATT should be based on clinical correlation.

Conflic of Interest
None declared.

References