Synthesis 2022; 54(05): 1375-1387
DOI: 10.1055/s-0041-1737291
paper

Divergent Synthesis of Chalcogenylated Quinolin-2-ones and Spiro[4,5]trienones via Intramolecular Cyclization of N-Aryl­propynamides Mediated by Diselenides/Disulfides and PhICl2

Xiaoxian Li
,
Beibei Zhang
,
Zhenyang Yu
,
Dongke Zhang
,
Haofeng Shi
,
Lingzhi Xu
,
Yunfei Du
Y. Du acknowledges the National Natural Science Foundation of China (22071175) for funding.


Abstract

The reaction of N-arylpropynamides with (dichloroiodo)benzene (PhICl2) and diselenides/disulfides resulted in a divergent synthesis of chalcogenylated quinolinones and spiro[4.5]trienes through intramolecular electrophilic cyclization and chalcogenylation. The chalcogenyl functional group was introduced by an electrophilic reactive organosulfenyl chloride or selenenyl chloride species, generated in situ from the reaction of disulfides/diselenides and PhICl2. Notably, the divergent cyclization pathways were determined by the substituent type on the aniline ring in N-arylpropynamide substrates. Substrates bearing a fluoro, methoxy or trifluoromethoxy group at the para-position of the aniline underwent an alternative spiralization pathway to give the 3-chalcogenylated spiro[4,5]trienones.

Supporting Information



Publication History

Received: 18 September 2021

Accepted after revision: 17 October 2021

Article published online:
29 November 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Park HB, Kim Y.-J, Lee JK, Lee KR, Kwon HC. Org. Lett. 2012; 14: 5002
    • 1b D’yakonov VA, Trapeznikova OA, de Meijere A, Dzhemilev UM. Chem. Rev. 2014; 114: 5775
    • 1c Rios R. Chem. Soc. Rev. 2012; 41: 1060
    • 1d Gravel E, Poupon E. Nat. Prod. Rep. 2010; 27: 32
    • 1e Li X, Huo X, Li J, She X, Pan X. Chin. J. Chem. 2009; 27: 1379
    • 2a DeVita RJ, Hollings DD, Goulet MT, Wyvratt MJ, Fisher MH, Lo J.-L, Yang YT, Cheng K, Smith RG. Bioorg. Med. Chem. Lett. 1999; 9: 2615
    • 2b Aleksić M, Bertoša B, Nhili R, Uzelac L, Jarak I, Depauw S, David-Cordonnier M.-H, Kralj M, Tomić S, Karminski-Zamola G. J. Med. Chem. 2012; 55: 5044
    • 2c Tedesco R, Shaw AN, Bambal R, Chai D, Concha NO, Darcy MG, Dhanak D, Fitch DM, Gates A, Gerhardt WG, Halegoua DL, Han C, Hofmann GA, Johnston VK, Kaura AC, Liu N, Keenan RM, Lin-Goerke J, Sarisky RT, Wiggall KJ, Zimmerman MN, Duffy KJ. J. Med. Chem. 2006; 49: 971
    • 2d Crawley GC, Briggs MT, Dowell RI, Edwards PN, Hamilton PM, Kingston JF, Oldham K, Waterson D, Whalley DP. J. Med. Chem. 1993; 36: 295
    • 2e Ikuma Y, Hochigai H, Kimura H, Nunami N, Kobayashi T, Uchiyama K, Furuta Y, Sakai M, Horiguchi M, Masui Y, Okazaki K, Sato Y, Nakahira H. Bioorg. Med. Chem. 2012; 20: 5864
    • 2f Jönsson S, Andersson G, Fex T, Fristedt T, Hedlund G, Jansson K, Abramo L, Fritzson I, Pekarski O, Runström A, Sandin H, Thuvesson I, Björk A. J. Med. Chem. 2004; 47: 2075
    • 3a Wang N, Saidhareddy P, Jiang X. Nat. Prod. Rep. 2020; 37: 246
    • 3b Feng MH, Tang BQ, Liang SH, Jiang XF. Curr. Top. Med. Chem. 2016; 16: 1200
    • 3c Liu G, Huth JR, Olejniczak ET, Mendoza R, DeVries P, Leitza S, Reilly EB, Okasinski GF, Fesik SW, von Geldern TW. J. Med. Chem. 2001; 44: 1202
    • 3d De Martino G, Edler MC, La Regina G, Coluccia A, Barbera MC, Barrow D, Nicholson RI, Chiosis G, Brancale A, Hamel E, Artico M, Silvestri R. J. Med. Chem. 2006; 49: 947
    • 3e Nogueira CW, Zeni G, Rocha JB. T. Chem. Rev. 2004; 104: 6255
    • 3f Zeni G, Lüdtke DS, Panatieri RB, Braga AL. Chem. Rev. 2006; 106: 1032
    • 3g Perin G, Lenardão EJ, Jacob RG, Panatieri RB. Chem. Rev. 2009; 109: 1277
    • 3h Yu S, Wan B, Li X. Org. Lett. 2015; 17: 58
    • 3i Lavekar AG, Equbal D, Saima, Sinha AK. Adv. Synth. Catal. 2018; 360: 180
    • 3j Zhang X, Wang C, Jiang H, Sun L. Chem. Commun. 2018; 54: 8781
    • 4a Dénès F, Pichowicz M, Povie G, Renaud P. Chem. Rev. 2014; 114: 2587
    • 4b Mondal S, Manna D, Mugesh G. Angew. Chem. Int. Ed. 2015; 54: 9298
    • 4c Pang Y, An B, Lou L, Zhang J, Yan J, Huang L, Li X, Yin S. J. Med. Chem. 2017; 60: 7300
    • 5a Freudendahl DM, Santoro S, Shahzad SA, Santi C, Wirth T. Angew. Chem. Int. Ed. 2009; 48: 8409
    • 5b Li J, Ma C, Xing D, Hu W. Org. Lett. 2019; 21: 2101
    • 5c Xu Z.-F, Jiang M, Liu J.-T. Chin. J. Chem. 2017; 35: 442
    • 5d Liu Y, Chen X.-L, Sun K, Li X.-Y, Zeng F.-L, Liu X.-C, Qu L.-B, Zhao Y.-F, Yu B. Org. Lett. 2019; 21: 4019
    • 6a Paul S, Shrestha R, Edison TN. J. I, Lee YR, Kim SH. Adv. Synth. Catal. 2016; 358: 3050
    • 6b Zhang N, Zuo H, Xu C, Pan J, Sun J, Guo C. Chin. Chem. Lett. 2020; 31: 337
    • 6c Gao W.-C, Liu T, Cheng Y.-F, Chang H.-H, Li X, Zhou R, Wei W.-L, Qiao Y. J. Org. Chem. 2017; 82: 13459
    • 6d Cui H, Wei W, Yang D, Zhang J, Xu Z, Wen J, Wang H. RSC Adv. 2015; 5: 84657
    • 6e Wu W, An Y, Li J, Yang S, Zhu Z, Jiang H. Org. Chem. Front. 2017; 4: 1751
    • 6f Wei W, Cui H, Yang D, Yue H, He C, Zhang Y, Wang H. Green Chem. 2017; 19: 5608
    • 6g Song R, Xie Y. Chin. J. Chem. 2017; 35: 280
    • 6h Fang J.-D, Yan X.-B, Zhou L, Wang Y.-Z, Liu X.-Y. Adv. Synth. Catal. 2019; 361: 1985
    • 6i Li M, Song R.-J, Li J.-H. Chin. J. Chem. 2017; 35: 299
  • 7 Mantovani AC, Goulart TA. C, Back DF, Menezes PH, Zeni G. J. Org. Chem. 2014; 79: 10526
  • 8 Sahoo H, Mandal A, Dana S, Baidya M. Adv. Synth. Catal. 2018; 360: 1099
  • 9 Qian P.-C, Liu Y, Song R.-J, Xiang J.-N, Li J.-H. Synlett 2015; 26: 1213
  • 10 Hua J, Fang Z, Xu J, Bian M, Liu C, He W, Zhu N, Yang Z, Guo K. Green Chem. 2019; 21: 4706
    • 11a Xing L, Zhang Y, Li B, Du Y. Org. Lett. 2019; 21: 3620
    • 11b Shang Z, Chen Q, Xing L, Zhang Y, Wait L, Du Y. Adv. Synth. Catal. 2019; 361: 4926
    • 11c Ai Z, Xiao J, Li Y, Guo B, Du Y, Zhao K. Org. Chem. Front. 2020; 7: 3935
  • 12 Browne DM, Niyomura O, Wirth T. Org. Lett. 2007; 9: 3169
    • 13a Sahoo H, Grandhi GS, Ramakrishna I, Baidya M. Org. Biomol. Chem. 2019; 17: 10163
    • 13b Liu T, Li Y, Jiang L, Wang J, Jin K, Zhang R, Duan C. Org. Biomol. Chem. 2020; 18: 1933
    • 13c Liu Y, Wang Q.-L, Chen Z, Zhou Q, Xiong B.-Q, Zhang P.-L, Tang K.-W. Chem. Commun. 2019; 55: 12212
  • 14 Most recently, we reported that the F or OMe substituted N-aryl alkynamides at the para position could trigger the spiralization pathway leading to the formation of spiro[4,5]trienones. On the basis of both computational and the experimental results, a new mechanism has been put forward that accounts for the exclusive spiralization/defluorination process. For details describing this, see: Li X, Wang Y, Ouyang Y, Yu Z, Zhang B, Zhang J, Shi H, Zuilhof H, Du Y. J. Org. Chem. 2021; 86: 9490
    • 15a Sperança A, Godoi B, Pinton S, Back DF, Menezes PH, Zeni G. J. Org. Chem. 2011; 76: 6789
    • 15b Yao T, Larock RC. J. Org. Chem. 2003; 68: 5936
    • 16a Mancuso AJ, Brownfain DS, Swern D. J. Org. Chem. 1979; 44: 4148
    • 16b Lucchini V, Modena G, Valle G, Capozzi G. J. Org. Chem. 1981; 46: 4720
    • 16c Fachini M, Lucchini V, Modena G, Pasi M, Pasquato L. J. Am. Chem. Soc. 1999; 121: 3944
    • 16d Brydon SC, Lim SF, Khairallah GN, Maître P, Loire E, da Silva G, O’Hair RA. J, White JM. J. Org. Chem. 2019; 84: 10076
    • 17a Tang JS, Guo CC. Synthesis 2015; 47: 108
    • 17b Tang JS, Xie YX, Wang ZQ, Li JH. Synthesis 2011; 2789
    • 17c Zhou MB, Wei WT, Xie YX, Lei Y, Li JH. J. Org. Chem. 2010; 75: 5635
    • 17d Qian DY, Zhang JL. Chem. Commun. 2012; 48: 7082
    • 17e Pinto A, Neuville L, Retailleau P, Zhu JP. Org. Lett. 2006; 8: 4927
    • 17f Wang CS, Roisnel T, Dixneuf PH, Soulé JF. Adv. Synth. Catal. 2019; 361: 445
    • 17g Cao J, Sun K, Dong SD, Lu T, Dong Y, Du D. Org. Lett. 2017; 19: 6724
    • 17h Mou CL, Wu JC, Huang ZJ, Sun J, Jin ZC, Chi YR. Chem. Commun. 2017; 53: 13359
    • 17i Butke GP, Jimenez MF, Michalik J, Gorski RA, Rossi NF, Wemple J. J. Org. Chem. 1978; 43: 954
    • 17j Yin C, Yang T, Pan Y, Wen J, Zhang X. Org. Lett. 2020; 22: 920