Rh Homo Diels–Alder
2 x
Ph Ar–H
R Me
Ar a b g
Au Asymmetric hydroarylations
CO2Et EtO2C Me
Au [2+2] cycloaditions
α-Cationic Phosphines: from Curiosities to Powerful Ancillary Ligands
C. J. Rugen, M. Alcarazo
Confining the Inner Space of Strained Carbon Nanorings

N. Grabicki
O. Dumele*
Humboldt Universität zu Berlin, Germany

Recent Progress in Synthesizing Polyethers by Use of Organocatalysts

Y.-Y. Zhang
G.-W. Yang
G.-P. Wu*
Zhejiang University, P. R. of China
α-Cationic Phosphines: from Curiosities to Powerful Ancillary Ligands

C. J. Rugen
M. Alcarazo *
Georg-August-Universität
Göttingen, Germany

Long Journey on Daptomycin

X. Li
University of Hong Kong, P. R. of China

Bis(η5-cyclopentadienyl)[μ-(4b,5,5a-η3:9b,10,10a-η3)-2,3,7,8-tetrakis(trimethylsilyl)benzo[3,4]cyclobuta[1,2-b]biphenylene]-syn-di-cobalt (Co–Co), a Dinuclear π-Complex of the Linear [3]Phenylene Framework

R. Padilla
K. P. Vollhardt *
K. N. Houk
J. J. Wong
University of California at Berkeley, USA
A Chiral, Dendralenic C–H Acid

D. Höfler
B. List*
Max-Planck-Institut für Kohlenforschung, Germany

Cyanide-Free Cyanation of Aryl Iodides with Nitromethane by Using an Amphiphilic Polymer-Supported Palladium Catalyst

T. Suzuka
R. Niimi
Y. Uozumi*
Institute for Molecular Science (IMS), Japan

A Chiral Sulfoxide-Based C–H Acid

D. Höfler
K. Kaupmees
I. Leito
B. List*
Max-Planck-Institut für Kohlenforschung, Germany
Diastereoselective Synthesis of the ABCD Ring System of Rubriflorldilactone B

H. G. Roth
D. A. Nicewicz*
University of North Carolina at Chapel Hill, USA

Pd-Catalyzed Arylation of 1,2-Amino Alcohol Derivatives via β-Carbon Elimination

M. Sau
M. A. Pericàs*
R. Martin*
Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology (BIST) and Universitat de Barcelona, Spain

Suzuki–Miyaura Cross-Coupling Reaction with Potassium Aryltrifluoroborate in Pure Water Using Recyclable Nanoparticle Catalyst

M. Kawase
K. Matsuoka
T. Shinagawa
G. Hamasaka
Y. Uozumi
O. Shimomura
A. Ohtaka*
Osaka Institute of Technology, Japan
First Total Synthesis of the Marine-Derived Anti-inflammatory Natural Product (–)-Herdmanine D through a Steglich Esterification

P. Sharma
N. Sharma
G. Kashyap
S. Bhagat*
University of Delhi, India

Highlights:
• total 8 steps, overall 18% yield
• highly efficient, scalable total synthesis
• regioselective synthesis
• rare 6-bromo-5-hydroxyindole moiety synthesized

One-Pot Synthesis of 3-(1,2,3,4-Tetrahydroisoquinolin-1-yl)-isoquinolin-1(2H)-ones by DEAD-Promoted Oxidative Ugi–Wittig Reaction Starting from Phosphonium Salt Precursors

L. Zhao
M.-L. Yang
M. Sun
M.-W. Ding*
Central China Normal University, P. R. of China

DEAD as an efficient metal-free oxidant
Simple operation, mild reaction conditions
A first example of oxidative Ugi–Wittig sequence starting from phosphonium salt precursors

S₈-Mediated Cyclization of Bis(2-aminophenyl) Disulfide/Diselenide with Arylacetylenes/Styrenes: Access to 2-(Arylmethyl)-1,3-benzothi azoles/benzoselenazoles

H. Gan
C. Feng
L. Zhao
M. Cao
H. Wu*
Nanjing Tech University, P. R. of China

1) transition-metal-free
2) readily available starting materials

© 2022. Thieme. All rights reserved.
Total Synthesis of Resolvin T4

N. Ogawa*
K. Arai
Y. Kobayashi
Meiji University, Japan

Enantioselective Synthesis of the Sex Pheromone of Lichen Moth, *Miltochrista calamine*, and Its Diastereomer

G. Yuan
J. Liu
S. Yu
X. Wang
Q. Bian
M. Wang
J. Zhong*
China Agricultural University, P. R. of China

Intermolecular Nucleophilic Addition Reaction of a C-7 Anion from N-[Bis(dimethylamino)phosphoryl]indole to Electrophiles/Arynes: Synthesis of 7-Substituted Indoles

E. Sharma
M. Kaur
B. Kaur
A. Kaur
P. Singh
K. N. Singh*
Panjab University, India
C–H Amination of Nitro Azaheterocyclic Compounds by Vicarious Nucleophilic Substitution

**Direct C-H amination via a VNS route**

Heteroarenes = pyrazole, triazole, indazole, benzoazolazole, and pyrazol(5,4-b)pyridine

- Only one-step reaction
- Moderate to excellent yield
- Good regioselectivity
- Amination reagent used is inexpensive, commercially available and less toxic
- Mild reaction conditions and simple operation
- Reaction time is very short, only 2-4 h
- No additional catalysts or reagents
- Nucleophilic amination complementary to electrophilic amination

Indium(III)-Catalyzed Synthesis of Primary Carbamates and N-Substituted Ureas

- Readily available starting materials
- Nontoxic catalyst
- High atom economy
- Short reaction times
- Good to excellent yields

Palladium-Catalyzed [1,3]-O-to-N Rearrangement of Allylic Imidates

8 examples, 52–92% yield