Synthesis of N^a-Fmoc-Protected Amino Acid Esters and Peptides

^a% ee values were determined by chiral HPLC using either Chiralcel OD or Chiralpak AS columns (0.46×25 cm) using hexane and isopropanol as eluent at 20 °C and 1 mL/min flow-rate, at 280 nm. Fmoc-D-products were synthesized and used as standards to demonstrate that resolution of possible enantiomers was achieved with the HPLC conditions employed. ^b% ee value determined via RP-HPLC using a Vydac C4 peptide, protein column with water and 90% acetonitrile in water each containing 0.1% TFA as elution solvents.

Significance: Since the development of solidphase peptide synthesis, the 9-fluorenylmethoxycarbonyl (Fmoc) group has been the protecting group of choice for obtaining peptides in high purities. Consequently, the peptide-chemistry industry has been searching for new methods to synthesize Fmoc-protected amino acids and peptides. In 2000, Schneider and Dzubeck developed a simple onepot protocol for the conversion of *N*-benzyloxycarbonyl (CBz)-protected amino acid esters or peptides into the corresponding *N*-Fmoc-protected compounds. **Comment:** Conversion of *N*-Cbz-protected amino acid esters or peptides into the corresponding *N*-Fmoc-protected derivatives proceeds smoothly through hydrogenation in the presence of Pd/C and 2,2'-bipyridine as a catalyst system in the presence of Fmoc-O-succinimide (Fmoc-OSu). The reaction gives the desired compounds in high yields with excellent stereoselectivities, and it tolerates various other functional groups.

Category

Peptide Chemistry

Key words

benzyl carbamates

fluorenylmethyl carbamates

hydrogenation

protecting groups

solid-phase synthesis

