Photoinduced Cobalt-Catalyzed Enantioselective Reductive Addition of Aryl Iodides to Aldehydes

Significance: A photoredox cobalt-catalyzed enantioselective approach to a Grignard-type addition of aryl iodides to aldehydes is reported. Notably, the mild reaction conditions enable a wide range of functional groups and heterocycles to be tolerated.

Comment: 4CzIPN is used as the photocatalyst, which can be excited under visible-light irradiation. The use of Hantzsch ester as the reductant is notable because it avoids the generation of stoichiometric metal waste.

Selected examples:

- **1-naph**
 - R¹ = COMe, 99% yield, 97% ee
 - R¹ = Br, 92% yield, 97% ee
- **Ph**
 - R¹ = Br, 92% yield, 97% ee
- **N**
 - R¹ = OH, 97% yield, 98% ee
- **Cl**
 - R¹ = OH, 93% yield, 95% ee
- **KOH, CH₂Cl₂**
 - 98% yield
- **D-cloperastine**
 - R¹ = OH, 99% yield, 99% ee
- **R₂ = 4-biphenyl**
 - 72% yield, 95% ee
- **R₂ = 72% yield, 95% ee**
- **R₂ = 91% yield, 97% ee, Z/E > 19:1**
- **Br**
 - R² = OH, 74% yield, 94% ee

Proposed mechanism:

- **Ar⁻I**
 - 4CzIPN⁻
- **Ar**
 - 4CzIPN⁺
- **Py**
 - OH
 - **HE⁻**
 - **PyPh⁺**
 - **HE⁺**

SYNFACTS Contributors: Mark Lautens, Jeanne Masson-Makdissi

SYNFACTS 2022, 18(07), 0749 Published online: 15.06.2022
DOI: 10.1055/s-0041-1737613; Reg-No.: LD6322SF

Category: Metals in Synthesis

Key words: cobalt catalysis, photoredox catalysis, Hantzsch esters, asymmetric reaction, Grignard-type addition