H. TSUTSUI, K. NARASAKA* (THE UNIVERSITY OF TOKYO, JAPAN)

Synthesis of Pyrrole Derivatives by the Heck-Type Cyclization of γ , δ -Unsaturated Ketone O-Pentafluorobenzoyloximes Chem. Lett. 1999, 28, 45-46, DOI: 10.1246/cl.1999.45.

The Narasaka-Heck Cyclization

$$\begin{array}{c} \text{OCOC}_6F_5 \\ \text{R}^1 \\ \text{(1.0 equiv)} \end{array} \\ \begin{array}{c} \text{Pd(PPh}_3)_4 \text{ (10 mol\%)} \\ \text{Et}_3\text{N (5.0 equiv)} \\ \\ \text{B0 °C, 1-3 h} \\ \text{R}^1 \\ \text{R}^1 \\ \text{R}^2 \\ \text{R}^2 \\ \text{HN} \\ \text{Or} \\ \\ \text{R}^1 \\ \text{R}^2 \\ \text{R}^2$$

Proposed mechanism:
$$CO_2 + HC_6F_5$$

$$protodecarboxylation$$

$$CO_2 + HC_6F_5$$

$$protodecarboxylation$$

$$Pd^{\parallel} = P^2$$

$$protodecarboxylation$$

$$protodecarboxylation$$

EtO₂C 81% yield 45% yield 75% yield 88% yield 78% yield

Significance: Based on the finding that palladium(0) can cleave the N-O bond of sulfonyloximes, Tsutsui and Narasaka reported a catalytic protocol coupled with an intramolecular Heck-type cyclization to form pyrroles. Competing Beckmann rearrangement of the oxime derivatives could be suppressed by changing from the sulfonyl- to the pentafluorophenylacyl N-protecting group.

Comment: In the following years, this method was successfully extended to access various N-heterocycles (see Review below). An enantioselective version for the synthesis of dihydropyrroles bearing a stereogenic center at the 2-position was introduced by Bower and co-workers (Chem. Sci. 2017, 8, 1981).

Review: M. Kitamura, K. Narasaka Chem. Rec. **2002**, 2, 268-277.

Synfacts 2022, 18(06), 0651 Published online: 17.05.2022

Metals in Synthesis

Key words

amino-Heck cyclization oximes palladium catalysis pyrroles

