
Low-Valent Tungsten Redox Catalysis Enables Controlled Isomerization and Carbonylative Functionalization of Alkenes
Nat. Chem. 2022, 14, 632–639, DOI: 10.1038/s41557-022-00951-y.

Significance:
A tungsten-catalyzed isomerization of terminal alkenes to unactivated internal positions followed by subsequent hydrocarbonylation with CO is reported. This work addresses common challenges associated with the regioselectivity of tandem alkene isomerization/functionalization reactions.

Comment:
Experimental and DTF studies were carried out to elucidate the mechanism. Key to this transformation is the six- to seven-coordinate geometry changes present in the W(0)/W(II) redox cycle and the presence of a conformationally flexible directing group that allows for isomerization to take place.

Proposed reaction profile:

![Proposed reaction profile diagram](image)

Selected examples:

- **Bn**
 - 79% yield, dr = 3:1
- **Pic**
 - 40% yield
- **Cl**
 - 76% yield
- **Br**
 - 65% yield
- **NBoc**
 - 93% yield
- **COO n-Bu**
 - 85% yield, dr > 20:1
- **Cl**
 - 65% yield, dr > 20:1
- **H**
 - 93% yield

Mechanistic experiments:

- **stand. cond.**
 - 88% yield, >98% D retention
- **PhMe, 150 °C**
 - 90% D