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Abstract Background Predictive analytic models, including machine learning (ML) models, are
increasingly integrated into electronic health record (EHR)-based decision support tools for
clinicians. These models have the potential to improve care, but are challenging to
internally validate, implement, andmaintain over the long term. PrinciplesofMLoperations
(MLOps)may inform development of infrastructure to support the entireML lifecycle, from
feature selection to long-term model deployment and retraining.
Objectives This study aimed to present the conceptual prototypes for a novel
predictive model management system and to evaluate the acceptability of the system
among three groups of end users.
Methods Based on principles of user-centered software design, human-computer
interaction, and ethical design, we created graphical prototypes of a web-based MLOps
interface to support the construction, deployment, and maintenance of models using
EHR data. To assess the acceptability of the interface, we conducted semistructured
user interviews with three groups of users (health informaticians, clinical and data
stakeholders, chief information officers) and evaluated preliminary usability using the
System Usability Scale (SUS). We subsequently revised prototypes based on user input
and developed user case studies.
Results Our prototypes include design frameworks for feature selection, model
training, deployment, long-term maintenance, visualization over time, and cross-
functional collaboration. Users were able to complete 71% of prompted tasks without
assistance. The average SUS score of the initial prototype was 75.8 out of 100,
translating to a percentile range of 70 to 79, a letter grade of B, and an adjective
rating of “good.”We reviewed persona-based case studies that illustrate functionalities
of this novel prototype.
Conclusion The initial graphical prototypes of this MLOps system are preliminarily
usable and demonstrate an unmet need within the clinical informatics landscape.
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Background and Significance

Big data are rapidly transforming how health care generates
new and leverages existing knowledge.1Defined by the “four
Vs,” that is, volume, variety, velocity, and veracity,2 big data
are especially promising in informing health care predictive
analytics.3 Machine learning (ML) models have been devel-
oped to accurately predict risk of adverse events including
hospital readmission,4–7 sepsis,8,9 suicide risk,10 opioid over-
dose risk,11 and postmyocardial infarction mortality risk,12

as well as coordinate clinical management.13 An especially
important repository of health care big data is the electronic
health record (EHR), through which vast stores of informa-
tion can be automatically processed to create a collection of
tools to support clinician decision-making and inform
patient care.

A large body of literature exists on the development of
predictive models for health care, but best practices for local
validation, implementation, and long-term maintenance in
clinical settings remain unclear.14 Coiera has referred to this
divide as the “last mile” of implementation, where algo-
rithms must navigate the challenges of differing local con-
texts and preexisting organizational structures.15 Challenges
specific to the “last mile” include validating accuracymetrics
on a local level, connecting accuracy to clinical outcomes,
generalizing and calibrating datasets drawn from diverse
populations, and embedding models in a dynamic organiza-
tional system.15 Other challenges include infrastructure
investment, high maintenance costs, and the need to contin-
uously adapt the system to handle new forms of data.16–24

The process demands significant time and human capital and
thus is frequently limited to a few major academic cen-
ters.20,21,23 Robust validation22 is particularly difficult, as
the heterogeneity of EHR systems and strict privacy regu-
lations preclude widespread interinstitutional sharing.
Therefore, it is unsurprising that only 34.6% of hospital
readmissionmodels5 and only 44models published between
2010 and 2019 are implemented in real-world clinical prac-
tice.21 Even after successful initial implementation, ML sys-
tems’ development process makes them susceptible to
“technical debt,” the long-term negative effects of immature,
insufficiently tested code created early on in the software
development life cycle.23,25 This technical debt manifests as
high maintenance costs, inability to add new features, or, in
severe cases, the need to replace the entire system. Designing
and building software infrastructure to support the ML
development lifecycle andmanage technical debt is the basis
for ML operations (MLOps), an emerging field focused on
applying well-established development and operations
(DevOps) practices in software engineering to scaling ML
in production.26–28 Sculley et al observed that only a small
fraction of the codebase of ML projects is actual ML code; the
rest is infrastructure that can be factored out of individual
projects into a reusable framework.23,29 Reducing codebase
size reduces the footprint susceptible to accruing technical
debt.25

While DevOps tools are robust and widely available, few
comprehensive, publicly available end-to-end platforms for

MLOps exist.29 For example, IBM’s Runway30 and Facebook’s
FBLearner31 are both proprietary internal tools for managing
ML experiments. Google’s Kubeflow32 and TensorFlow Ex-
tended33 are specific to Kubernetes and TensorFlow, respec-
tively. ModelDB is limited to computational neuroscience.34

MLweb34 is browser-based and is thus limited by perfor-
mance constraints and lack of access to prebuilt codebases.
MLFlow has emerged as an open-source end-to-end MLOps
framework,35 but it is a command-line driven tool requiring
high levels of technical expertise. In addition, issues of data
security, standardization, governance, and regulatory com-
pliance specific to health care necessitate specialized solu-
tions for this field.1

Objectives

In this paper, we present a conceptual framework, in the
form of a graphical prototype, for a programming language
and model agnostic MLOps tool designed to support the
entire lifecycle of predictive model development using EHR
data. We use best practices from the Human–Computer
Interaction (HCI)36,37 to design and assess two prototypes
for an end-to-end machine learning workflow. Finally, we
present several persona-based case studies demonstrating
MLOps’ potential functionalities such as data management,
feature selection, model training, deployment, long-term
maintenance, and visualization over time.

Methods

Defining User Personas
From review of health information technology (IT) imple-
mentationworkflows at health care organizations, including
our own,38,39 we employed the HCI Personas methodolo-
gy36,37 as a framework for approaching and categorizing the
potential user base of our prototype. Through iterative
consultation with content experts, we used this framework
to organize health care–based data analysis and manage-
ment roles into three key “user personas.” These are the
health informatician, the chief information officer (CIO), and
the organization’s clinical and data stakeholders (physicians,
clinical staff, and health care researchers).

Together, these three personas are involved in the crea-
tion, maintenance, and ongoing evaluation of clinically rele-
vant predictive models in the health care setting. The health
informatician focuses on exploring datasets to support the
development and validation of predictive models for clinical
problems identified by the clinical and data stakeholders. At
many organizations, this process is conductedwith oversight
from the CIO, who serves as the liaison between health
informaticians and clinical and data stakeholders.40 Clinical
and data stakeholders serve as both the drivers of model
development and as the end users. Ongoing evaluation of
model performance involves health informaticians preparing
performance data for the CIO and other stakeholders to
review. These user personas represent a simplified schemat-
ic of the larger health care analytics space; their unique roles
inform workflow development and customization.
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Defining Workflow Parameters
To define the workflow parameters for predictive model
development in clinical settings, we draw on best practices
for automated analyses without loss of validity,20 including
principles of continuous integration in software engineer-
ing27 and the framework for a “delivery science” of artificial
intelligence in health care described by Li et al.14 The
following workflow parameters, modified from those pro-
posed by Reps et al,41 were identified for developing and
implementing predictive models in clinical practice.

1. Selecting suitable datasets for ingestion.
2. Constructing variables from observational data.
3. Training the predictive model using supervised learning.
4. Evaluating model performance with internal validation

using test sets, and, subsequently, with prospectively
collected data.

5. Using a representational state transfer (RESTful) applica-
tion programming interface (API) to apply models to
clinical use cases after appropriate clinical sign-off; this
includes postdeployment monitoring and periodic model
retraining.

In ►Fig. 1, we map our identified user personas onto this
ML workflow, highlighting the leading role of the health
informatician and the specific points of collaboration be-
tween the personas. As noted in the figure, the health
informatician is primarily responsible for executing the
workflow with support and input from the CIO and clinical
and data stakeholders.

Framework Design
We reviewed literature on principles of human-centered
design in health care42–45 and the potential challenges of
operationalizing ML at scale29,46 to determine features to

include in the initial prototype designs (►Table 1). To ac-
commodate both novice and experienced health informati-
cians and support visual representations of data, we
designed the framework as a web-based graphical user
interface (GUI) rather than a command-line interface. For
many tasks in both health care and non-health care settings,
GUIs are easier to learn and result in higher user satisfaction
than command line interfaces.47,48 Benefits of GUIs include
the ability to provide guidance at each required step, encour-
age exploration, and support graphical visualizations of
data.49

Using the user interface design tool Figma (San Francisco,
California, United States), we designed two prototypes; these
are based on our team’s ongoing “Emergency Digital Smart
Notifications (EDSN)” project focused on training predictive
models using a deidentified longitudinal EHRdataset ofmore
than 190,000 emergency department visits at an academic
health center in Rhode Island (in preparation).

Framework Usability Testing
We identified a convenience sample of six individuals rep-
resenting the three potential user personas: two health
informaticians, two CIOs, and two clinical and data stake-
holders (health care researchers). While the workflow is
primarily targeted toward the health informatician, we
included CIO and clinical and data stakeholder personas in
our user testing because they participate in decisions re-
garding dataset selection, variable definition, and model
evaluation. Additionally, feedback on acceptability from
multiple groups encourages discussion on organization-
wide “data culture” in successful implementation of
models.50

Two facilitators (E.B. and S.S.) following a semistructured
script (►Supplementary Appendix A1, available in the online

Fig. 1 A visual depiction of our standardized machine learning workflow. The intersecting circular shapes highlight the iterative nature of
predictive model creation. The outlined badges indicate the major end-user groups that interact at each step. While the health informatician
participates in all stages of the workflow, clinical and data stakeholders and the CIO participate in selecting suitable datasets for ingestion,
constructing variables, and evaluating model performance over time. API, application programming interface; CIO, chief information officer;
RESTful, representational state transfer.
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version) explored the acceptability of both prototypes
(►Supplementary Appendix A2, available in the online ver-
sion) with potential users whowere naïve to the design. One
facilitator moderated each session while the other recorded
user quotes and observations. After navigating through each
prototype, interviewees were asked to fill out the System
Usability Scale,51 a reliable (Cronbach’s α>0.90)52–54 survey
instrument validated in several contexts for evaluating us-
ability of software interfaces.55

Following these evaluative interviews, we tallied comple-
tion rates for each task and iteratively analyzed interview
notes containing both verbatim quotes and interviewer
observations to reveal recurrent themes.56 We then revised
designs to correct usability shortcomings (identified, for
example, by low completion rates during testing) and to
better support the workflow described by each user persona
during the interview.

Results

Initial Prototypes
We created two prototypes focusing on our primary use
cases for the health informatician (►Supplementary

Appendix A2, available in the online version). The first
prototype highlights the workflow of creating and imple-
menting a new model, including primary data schema
definition, trialing feature and outcome definitions, and
debugging initial versions of ML scripts. The second proto-

type explores the experience of maintaining production
models deployed via the API over the span of a few months.

Usability Testing Results
As expected, participants from each of our three identified
user personas (health informatician, the CIO, and the orga-
nization’s clinical and data stakeholders) varied widely in
both familiarity with ML principles and day-to-day job
descriptions. On average, users were able to complete 71%
of prompted tasks, with the most challenging being discov-
ering the events page, configuring API settings, and interact-
ing with the dashboard visualizations without prior
guidance. ►Supplementary Appendix B (available in the
online version) describes detailed feedback, including task
completion counts grouped by thematic category.

We obtained SUS scores for four out of six user testing
sessions for an average score of 75.8 out of 100. This is slightly
higher than the reported average of 67.6 for enterprise
software prototypes.57 Using the Curved Grading Scale
(CGS) interpretation for SUS scores,58 this translates to a
percentile range of 70 to 79, a letter grade of B, and an
adjective rating of “good.”

Users found the overall value of the system to be stream-
lining the continued monitoring and upkeep of production
models. Users challenged the team to provide better expla-
nations for each section to expand the number of program-
ming languages supported when specifying models and to
consider more sophisticated performance visualizations

Table 1 Design features by core design tenet

Core tenet Mission statement Proposed design features

Ethical The system must be ethical, adhering to the
highest standards of data security and
preservation of patient anonymity through
deidentified data

Accepts only deidentified PHI and includes
robust configuration and administrative
controls for enforcing security best practices

Auditable The system must be auditable so that all
events are viewable for security, monitoring,
and debugging purposes

All security, monitoring, and debugging
events are viewable and downloadable.
Qualified users can opt-in to notifications of
key system events

Adaptable The system must be adaptable so that the
system continues to grow in value over time
to justify the up-front cost of implementation

Model performance is trended over time and
all features, outputs, and models have edits
tracked over time for easy viewing and
rollback

Automated The system must be automated so that the
models can continue to incorporate new
input within user-defined parameters at all
steps of the workflow without immediate
user intervention

New data automatically triggers a cascade of
updates to features, outputs and models
without manual user intervention. These
asynchronous running tasks are centralized
for easy monitoring

Accessible The system must be accessible so that the
results of the models are available to all those
who need them

Validated models can be made publicly
accessible via a RESTful API for application to
clinical settings after appropriate clinical
sign-off with post-deployment monitoring
using the dashboard and events views.
Performance reports can be generated for
communicating higher order trends in
performance

Abbreviations: API, application programming interface; PHI, protected health information; RESTful, representational state transfer.
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rather than summary scores trended over time (►Table 2).
Based on user feedback, we revised the designs (►Fig. 2:
overview of revised designs; ►Supplementary Appendix C

[available in the online version]: annotated design docu-
ments), guided by core design tenets (►Supplementary

Appendix D, available in the online version).

Case Study of Potential Health Informatician
Workflow
Here, we outline the potential workflow of this MLOps
program for a new health informatician user. The health
informatician first configures mapping rules to transform
data stored in comma separated value (CSV) files to struc-
tured query language (SQL) tables, specifying how CSV file
names map onto SQL table names (►Fig. 3A) and how CSV
columns map onto SQL columns (►Fig. 3B). We chose the
widely used SQL language as a database management tool
because its fixed data schema is well-suited for the structure
of most clinical datasets.59 Future data exports from the EHR
will automatically apply these rules to ingest data. Once data
are ingested, the informatician codes SQL definitions for
calculating all inputs and outcomes from the ingested data
schema. Thebuilt-in SQL editor prioritizes usability by listing
out query requirements, providing a preview of the available
data schema, and showing query sample output (►Fig. 3D).
As input and outcome definitions are updated, all edits to
these definitions are tracked to form a project changelog for
future records (►Fig. 3C).60

The informatician is now ready to define models, first
specifying SQL definitions for inputs and outcomes and then
the model environment before implementing each of the
four scripts required for a complete model definition
(►Fig. 4B) and then running the training function. The
interface does not have “prepackaged” models; rather, users
may write or import their own custom scripts. While the
model environment must be one of the supported languages
(currently Julia,61 Python,62 and R63), the editor also allows

users to import project files from their computers or a third-
party code-hosting service such as Github (San Francisco,
California, United States). Users can select shell scripts from
these project files to run either before or after the training
function is executed (►Fig. 4C). This approach of selecting a
fixed-model environment while supporting shell scripts
enables support for polyglot projects and represents a com-
promise between language-specific optimizations and the
infinite flexibility of shell scripting. As model definitions are
updated, all prior iterations of the model remain viewable
(►Fig. 4A).

Models are automatically refreshed each time new data are
detected; any currently executing tasks are summarizedwith-
in a top-level menu for easy tracking (►Fig. 5A). Performance
of each of these iterations may be trended graphically using
standard or custommetrics to determine promising candidate
models (►Fig. 5B). Aggregate performance across multiple
outcomes—perhaps each an “experiment”41—may also be
compared (►Fig. 5A). Model candidates can be made publicly
accessible via an access-controlled RESTful API (►Fig. 5C) to
either deploy to production or integratewith additional tools.
Documentation for each API endpoint is automatically gener-
ated to further streamline access (►Fig. 5D).

The flexibility of our script-based approach to model
configuration supports external validation. During model
creation, the informatician may select inputs and outcomes
corresponding to both the internal and external validation
datasets (►Fig. 4B). While the internal validation data are
used in thefirst script to train themodel, both datasets can be
used in the fourth script to score the model with respect to
both internal and external validation metrics (►Fig. 5A).
Also, the API functionality allows models to integrate with
other external validation packages (►Fig. 5C).

Health Care–Specific Considerations
Our approach provides tools to address health care–specific
considerations, including maintaining patient privacy as

Table 2 Key user testing sentiments by user persona

User persona Key sentiments

Health informatician Emphasized the usefulness of bringing together a “live model that keeps updating on
some kind of scheduled basis” and being “able to monitor [the model]” after
deployment

Wanted “a little bit more of an introduction” and “a little more description about what
each section does” for the “users who are coming to use these tools less frequently and
from different data science education levels”

Health care researcher
(a clinical and data stakeholder)

“Once [she] finished developing [a model], this would be a really good interface
especially if there are multiple people working on this”

Setting up the system would “need lots of prework [but] once complete … would be
really helpful” over the long term

Chief information officer (CIO) Remarked on the possible “reduce[d] maintenance work” that would comewithmanual
retraining and monitoring

Regarding writing structured query language queries in the configuration pages, a CIO
concluded that “this is the kind of thing [for which] you’d want an analyst or data
scientist … rather than a clinician”

Applied Clinical Informatics Vol. 13 No. 1/2022 © 2022. Thieme. All rights reserved.

A Graphical Toolkit for Predictive Model Training Bai et al.60

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



Fig. 2 Design overview schematic. An overview of the version 2 of our proposed designs after incorporating user feedback. Each tile
represents a major section of the design. The directional arrows represent our hypothesized workflow, starting from set-up of the
data analysis pipeline to tracking model performance on the dashboard to launching high-performing models via the API. The labels
correspond to the specific design document that provides an in-depth overview of that specific functionality. API, application
programming interface.

Fig. 3 Design walkthrough, specifying data schema and definitions. Walkthrough of specifying the data schema during data ingestion and input
and outcome definitions; (A) specifying rules for mapping CSV file names to SQL table names; (B) specifying rules for mapping CSV column
names to SQL column names; (C) overview of all inputs and outcomes, prior versions tracked and accessible via menu; (D) SQL editor for
specifying definitions with requirements list and query output preview. CSV, comma separated value.
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Fig. 4 Design walkthrough, configuring models. Walkthrough of configuring models; (A) overview of all active models showing prior runs; (B)
create a newmodel by specifying inputs, outcomes, and language environment; (C) dedicated code editor for each step of defining a model with
ability to add additional project files and specify bash scripts to run before or after function execution

Fig. 5 Design walkthrough, tracking performance and deploying models. Walkthrough of tracking performance and deploying models; (A)
compare aggregated performance across different outcomes, keep track of ongoing tasks; (B) compare model performance for a single
outcome; (C) configure RESTful API endpoints to allow authorized applications to access trained models; (D) send automatically generated
documentation to developers of authorized applications. API, application programming interface; RESTful, representational state transfer.
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specified by the Health Insurance Portability and Account-
ability Act (HIPAA).64–66 Technical provisions aremaintained
by properly configuring server and communication proto-
cols; we increase the visibility of key technical configuration
parameters by displaying security status on a prominent
status panel (►Fig. 6B). Administrative provisions are main-
tained by a centralized event log with configurable notifica-
tions (►Fig. 6A), a centralized security dashboard for
managing user access and specifying minimum password
standards (►Fig. 6B), a built-in protected health information
(PHI) checker that uses regular expressions to search for
possible instances of the 18 PHI identifiers (►Fig. 6C), and an
access key mechanism to ensure only authorized applica-
tions are able to access models via the API (►Fig. 6D).

Discussion

Wedeveloped and evaluated a prototype for anMLOpsGUI to
automate data ingestion, model retraining, and deployment
forML integration into clinical tools.We found that the initial
designs were acceptable to our three user personas. We then
revised the designs to address shortcomings identified byour
formative user testing and to incorporate suggestions iden-
tified through qualitative thematic analysis of each user-
testing session.

Robust literature exists on potential applications for
predictive models4–6,8,10–12 and on the challenges of imple-

menting models in real-world settings.14,16–24 Our concep-
tual prototypes extend this work by proposing an integrated
MLOps framework for the entire predictive model develop-
ment lifecycle, including a core panel of features that would
otherwise require configuring multiple services into a cus-
tom pipeline.29,67 Unlike efforts by Google,32,33 Facebook,31

IBM,30,46 and others, our work complements existing open-
sourceMLOps frameworks, such as MLFlow,35 by providing a
potential GUI for its primarily command-line driven
functionality.

We recognize that graphical prototypes do not easily
translate to finished systems. However, our initial mapping
of essential features and our designs for an intuitive graphi-
cal framework can provide the groundwork for developers
of scalable MLOps systems. Although our work was con-
ducted at a single academic health care system, we address
the operational challenges of set-up, maintenance, and
monitoring common to ML research conducted across a
variety of health care institutions. National ML models, such
as the Epic Sepsis Model,68 have poor external validity in
local contexts; thus, it is imperative that health care orga-
nizations develop in-house capacity for adapting and vali-
dating ML models for local use. Of course, the clinical
efficacy of any predictive model trained on EHR data are
predicated on the quality of the input data and on recog-
nizing the impact of human factors and clinical practice
standards on model use.69 Adequate data governance by

Fig. 6 Healthcare-specific design concerns. Feature designs for healthcare-specific data security and privacy concerns; (A) track all events across
all users, configure notifications for key events; (B) manage access permissions, set password policies, and check server security status; (C) flag
possible protected health information leaks for remediation; (D) create API access keys and manage access requests. API, application
programming interface.
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hospital systems and widespread, robust testing of the
clinical impact of these tools is necessary to successfully
traverse the “last mile” of implementation.50

Limitations and Future Work

There are several limitations to our study. Given our focus
on evaluative rather than summative user testing, this
work focused on the detection and elimination of usability
issues rather than formal summative usability testing.
Also, while our user testing subjects were chosen to
minimize prior knowledge of our work and to maximize
coverage of user personas, the small number of people
interviewed is prone to bias and incomplete thematic
saturation. Although we integrated periodic model
retraining into our workflow and prototype, we did not
account for other methods of mitigating model degrada-
tion such as dynamic model updating through detection of
calibration drift.70

Future work includes conducting summative user re-
search on our design and refining the core feature set and
graphical interface through successive iterations of design
and evaluation. Additionally, we will explore mobile inter-
faces, trial custom performance metrics, and visualizations
to better support convergent and divergent external valida-
tion approaches,71 and integrate with third-party perfor-
mance visualization tools. Full development of this tool will
pave theway for effective application of advanced techniques
such as transfer learning72,73 and encourage further
advancements in harnessing big data to improve the safety
and efficacy of clinical care.

Conclusion

We presented a conceptual framework, in the form of a
graphical prototype, for an MLOps tool designed to support
the entire lifecycle of predictive model development using
EHR data. We evaluated the acceptability of this tool among
three “user personas” of end users: the health informati-
cian, CIO, and organization’s clinical and data stakeholders.
Users were able to complete a majority of prompted tasks
and agreed that this tool, if built, would fill a niche in the
health care analytics landscape. This prototype extends
current work in MLOps and predictive modeling to offer
concrete design solutions for the implementation and on-
going maintenance of predictive models in healthcare
settings.

Clinical Relevance Statement

This MLOps framework can serve as the basis for the devel-
opment of EHR-integrated predictive model management
software. With full deployment and productization, health
care systems of any size may be able to use EHR data more
efficiently to develop questions, visualize connections, con-
ceptualize and test models, validate external models, track
performance over time, and integrate insights into a power-
ful suite of clinical decision support tools.

Multiple Choice Questions

1. Which of the following is an accurate statement about the
use of predictive models in clinical settings?
a. due to the low cost of computing and storage, most

healthcare systems have the financial capacity to de-
velop and implement predictive models

b. standards for data security and governance in health-
care are more relaxed than those of technology
companies that handle private user data, such as
Facebook

c. there is little role for software to support predictive
model development as most healthcare systems have
experienced analysts

d. it is important to externally validate predictive models
before implementing them as clinical decision support
tools, which can be an expensive process

Correct Answer: The correct answer is option d. It is
important to establish the generalizability of predictive
models through external validation; this can be an expen-
sive process as data from electronic health record (EHR)
systems is heterogeneous and model development and
validation frequently requires experienced analysts. Due
to Health Insurance Portability and Accountability Act
(HIPAA) laws, regulations regarding healthcare data gov-
ernance are generally more stringent than those of tech-
nology companies.

2. Which of the following is an advantage of graphical user
interfaces (GUI) compared with a command-line
interface?
a. GUIs have higher user satisfaction than command-line

interfaces
b. GUIs require users to have some technical background

to navigate the complex interface
c. GUIs typically do not require any software installation

or setup
d. GUIs are generally harder to learn for novice users

compared with command line interfaces

Correct Answer: The correct answer is option a. Due to
their interactive interface, ability to guide users through
different steps of usage, and ability to display visual-
izations, GUIs have been shown to have higher user
satisfaction than command-line interfaces.
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