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In theUnitedStates alone, over680,000 total kneearthroplasty
(TKA) procedures are performed each year, with growth
projections until 2030 ranging from 84.9 to 147%.1 Surgical
site infection (SSI) is one of the most common health care-
associated infections (HAI) among orthopaedic patients,2 esti-
mated to occur in 1 to 3.5% of total joint arthroplasties (TJAs).3

By 2030, the prevalence of TKA patients with SSI will increase
due to the significantly increasing demand for primary TKA

procedures; nonetheless, the rateof SSI following primaryTKA
is expected to range between 2.2 and 6.8%.4 The American
College of Surgeons National Surgical Quality Improvement
Program divides SSI into superficial and deep SSIs, with deep
SSI also commonly being known as periprosthetic joint infec-
tion (PJI). While superficial SSI generally requires a less
aggressive treatment approach, PJI often necessitates invasive
management with intravenous antibiotics and reoperations
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Abstract This is a retrospective study. Surgical site infection (SSI) is associated with adverse
postoperative outcomes following total knee arthroplasty (TKA). However, accurately
predicting SSI remains a clinical challenge due to the multitude of patient and surgical
factors associated with SSI. This study aimed to develop and validate machine learning
models for the prediction of SSI following primary TKA. This is a retrospective study for
patients who underwent primary TKA. Chart review was performed to identify patients
with superficial or deep SSIs, defined in concordance with the criteria of the
Musculoskeletal Infection Society. All patients had a minimum follow-up of 2 years
(range: 2.1–4.7 years). Five machine learning algorithms were developed to predict
this outcome, and model assessment was performed by discrimination, calibration,
and decision curve analysis. A total of 10,021 consecutive primary TKA patients was
included in this study. At an average follow-up of 2.8�1.1 years, SSIs were reported in
404 (4.0%) TKA patients, including 223 superficial SSIs and 181 deep SSIs. The neural
network model achieved the best performance across discrimination (area under the
receiver operating characteristic curve¼ 0.84), calibration, and decision curve analysis.
The strongest predictors of the occurrence of SSI following primary TKA, in order, were
Charlson comorbidity index, obesity (BMI >30 kg/m2), and smoking. The neural
network model presented in this study represents an accurate method to predict
patient-specific superficial and deep SSIs following primary TKA, which may be
employed to assist in clinical decision-making to optimize outcomes in at-risk patients.
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including TKA component exchanges.5 PJI is themost common
indication of revision in TKA patients,6 which results in
increased length of hospital stay and resource utilization.
From a patient’s standpoint, superficial and deep SSIs follow-
ing TKA have been associated with significant morbidity and
mortality.

Although the understanding of how patients differ in
terms of their susceptibility to SSI prior to TKA remains
incomplete, previous studies have identified several risk
factors that can be categorized as modifiable and non-
modifiable.7 Despite the continuous development of infec-
tion prevention modalities such as patient optimization,
advances in surgical technique, sterile protocols, and opera-
tive procedures, SSI after TKA still poses a substantial burden
to patients, surgeons, and the health care system. Therefore,
recent studies have developed predictive risk calculators to
estimate the probability of SSI preoperatively in an effort to
reduce SSI following TKA; however, their study findings
demonstrate limited success.8 Additionally, these risk calcu-
lators provide limited clinical utility due to their cumber-
some nature. With the development of computational
science and its availability to clinical fields, machine learning
(ML) models such as artificial neural networks (ANNs) rep-
resent a form of artificial intelligence that is particularly
suited for preoperative medical risk stratification and re-
source allocation. ML models have demonstrated high accu-
racy in predicting SSI following lumbar spinal fusion.9

However, there is a paucity of studies utilizing ML models
for the prediction of SSI following TKA. Therefore, this study
aimed to develop and validate ML models for the prediction
of SSI in patients following primary TKA.

Materials and Methods

Patient Cohort
This present study was approved by the Institutional Review
Board. A retrospective review of 10,089 primary TKA proce-
dures was performed. All TKA surgeries were performed
between 2016 and 2019 at our tertiary academic center. All
TKA surgeries were performed by a total of 11 fellowship-
trained arthroplasty surgeons. Patients with simultaneous
bilateral surgery, partial joint arthroplasty, and missing
perioperative data were excluded from the analysis. All
patients had a minimum follow-up of 2 years (range: range:
2.1–4.7 years). A total of 10,021 primary TKA patients
remained for the development and validation of ML algo-
rithms to predict SSI following primary TKA. The primary
outcome of interest in this study was the prediction of
superficial and deep SSIs in patients following primary
TKA. SSI was defined in concordance with the criteria of
the Musculoskeletal Infection Society.10

Clinical Variables
Using our institution’s electronic medical record system for
patient chart review, patient and procedural variables associ-
atedwith thedevelopmentofSSI followingTKAwerecollected.
Collected patient variables included age, gender, body mass
index (BMI), ethnicity, insurance status (Medicare, Medicaid,

and Private), social status, American Society of Anesthe-
siologist Physical Status score (ASA score), medical comorbid-
ities, Charlson comorbidity index (CCI), and preoperative
medications (►Table 1). Procedural variables included for
analysis involved laterality, indication for primary TKA, prior
injections/surgeries on the knee, prior ambulatory/inpatient
stays, anesthesia type, tranexamic acid usage, component

Table 1 Baseline characteristics of study population

Characteristic Primary TKA patients
(N¼ 10,021)

Demographics

Age (y) 74.2� 22.7

Gender 3,992 males; 6,029 females

BMI (kg/m2) 32.3� 6.4

Laterality 4,727 left; 5,294 right

ASA 1—616 (6.1%)

ASA score (%) ASA 2—6,168 (61.5%)

ASA 3—3,079 (30.2%)

ASA 4—226 (2.2%)

Charlson comorbidity
index

1.9�1.5

Insurance status (Medi-
care; Medicaid; Private)

1,847; 561; 7,613

Ethnicity (White, African
American, Hispanic, and
Asian)

9,686, 163, 112, 60

Follow-up time (y) 2.8�1.1

Comorbidities

Smoking (%) 502 (5.0%)

Drinking (%) 1,413 (14.1%)

Drug abuse (%) 173 (0.1%)

Diabetes mellitus (%) 710 (7.8%)

Depression (%) 594 (6.0%)

Renal failure (%) 438 (4.8%)

Malignant tumor (%) 819 (8.1%)

Hypertension 4,648 (46.3%)

Surgical variables

Blood loss (mL) 109.0� 96.0

Operation time (min) 78.9� 32.6

Spinal anesthesia (%) 82.8

Tranexamic acid usage
(%)

77.1

Tourniquet use (%) 94.1

Transfusion rates (%) 3.8

Cemented component
fixation (%)

96.2

Indication for primary
TKA (osteoarthritis)

92.5

Abbreviations: ASA, American Society of Anesthesiologist Physical
Status score; BMI, body mass index; TKA, total knee arthroplasty.
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fixation method (cemented vs. non-cemented), blood loss,
transfusion rates, and tourniquet use.

Model Development
For the SSI classification analysis, we employed five state-of-
the-art supervised ML methods: (1) ANN, (2) stochastic
gradient boosting, (3) support vector machines (SVMs), (4)
random forest (RF), and (5) elastic-net penalized logistic
regression. These ML methods were selected based on prior
studies showing the potency of thesemodeling techniques to
accurately predict arthroplasty patient outcomes. The data-
set underwent a random division into two groups using an

80:20 stratified split ratio, which resulted in a training
dataset (8,016 TKAs) and a testing dataset (2,005 TKAs).
Recursive feature eliminationwas used to select the subset of
parameters for finalmodeling. Five-fold cross-validationwas
performed five times to develop and assess all candidate
models.

The five ML models were assessed using the area under
the receiver operating characteristic curve (AUC). AnAUCof 1
represents a perfect ML model, while ML models no better
than chance have an AUC of 0.5.8 ML model calibration was
achieved through the use of a calibration plot. Overall model
performancewas assessed using the Brier score.11 PerfectML
models have a Brier score of 0. Decision curve analysis was
performed to measure the expected utility of TKA candidate
model predictions if clinical management was to change
based on ML model predictions. The interpretability of ML
models was performed at both global and local levels.

Statistical Analysis
All statistical analysis was performed using SPSS (SPSS
version 18.0; IBM Corp., Armonk, NY), Matlab (MathWorks
Inc., Natick, MA), Python (Python Software Foundation,
Wilmington, DE), and Anaconda (Anaconda Inc., Austin, TX).

Results

A total of 10,021 patients who underwent primary TKA were
analyzed.Of those10,021patients, 404 (4.0%) incidences of SSI
were observed at an average follow-up of 2.8�1.1 years,
including 223 superficial SSI as well as 181 PJIs. The mean
age of the patient cohort was 74.2�22.7 years, with a mean
BMI of 32.3�6.4 kg/m2. Patient demographics and surgical
variables for the TKA patient cohort are summarized
in►Table 1. The causative pathogens for PJIs are summarized
in►Table 2. On cross-validationof the training set, theAUCsof
the candidate models ranged from 0.78 for SVMs to 0.84 for
ANNs (►Table 3). The calibration intercept ranged from�0.18
to 0.17, with the best intercept for ANNs (intercept of
0.07; ►Table 3). The lowest Brier score error was achieved

Table 3 Discrimination and calibration of machine learning algorithms on the training set for TKA patients

Metric Artificial neural
network

Stochastic
gradient boosting

Support vector
machine

Random forest Elastic-net
penalized
logistic
regression

AUC 0.85 0.80 0.79 0.81 0.80

(0.82–0.82) (0.77–0.83) (0.77–0.81) (0.79–0.84) (0.77–0.83)

Intercept 0.07 0.16 �0.18 �0.12 0.17

(�0.01 to 0.15) (�0.05 to 0.37) (�0.30 to �0.06) (�0.20 to �0.04) (�0.02 to 0.36)

Slope 1.03 1.22 1.11 0.85 1.09

(0.91 to 1.15) (1.07 to 1.37) (1.01 to 1.21) (0.75 to 0.95) (1.04 to 1.14)

Brier 0.054 0.056 0.056 0.056 0.055

(0.053 to 0.056) (0.055 to 0.057) (0.054 to 0.057) (0.055 to 0.058) (0.054 to 0.056)

Abbreviations: AUC, area under the receiver operating characteristic curve; TKA, total knee arthroplasty.
Note: Data was expressed as mean (95% confidence interval). Null model Brier score¼ 0.058.

Table 2 Causative pathogens for the development of surgical
site infection following primary total knee arthroplasty

Causative pathogen Revision surgery
for SSI (N¼ 181)

Unfavorable

Methicillin-resistant
Staphylococcus aureus (MRSA)

10 (5.5%)

Pseudomonas aeruginosa 8 (4.4%)

Anaerobes 10 (5.5%)

Negative culture 29 (16.0%)

Other gram-negative organisms 13 (7.1%)

Mixed growth 20 (11.0%)

Favorable

Streptococcus species 17 (9.4%)

Staphylococcus species 15 (8.3%)

Coagulase-negative Staphylococci 9 (4.9%)

Other gram-positive organisms 14 (7.7%)

Propionibacterium acnes 8 (4.4%)

Staphylococcus aureus 23 (12.7%)

Other 5 (2.7%)

Abbreviation: SSI, surgical site infection.
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by ANNs (Brier score of 0.054). In the testing set, the AUCs of
thefive candidatemodels ranged from0.78 to 0.84 (►Table 4).
The highest AUC was achieved by ANNs (AUC¼0.84;
►Table 4). The Brier score errors in the testing set varied
between 0.054 and 0.056, with the lowest Brier score error for
ANNs. The accuracy of the five ML models exceeded 94%.

Decision curve analysis showed a higher net benefit for all
five ML models, when compared with the default strategies
of changing management for all patients or no patients.
Variables significantly associated with the development of
SSI were old age (>75 years), male gender, CCI, smoking,
alcohol use, diabetes, Medicare insurance, and BMI (►Fig. 1).
The strongest predictors of SSI were CCI, BMI (>30 kg/m2),
and smoking (►Fig. 2). Numerous medical comorbidities
demonstrated only a small impact on the development of
SSI following primary TKA: drug abuse (6.4%), depression
(5.3%), renal failure (5.1%), malignant tumor (3.8%), and
hypertension (1.2%). In terms of model performance, there
was no significant difference for ML candidate models pre-
dictions between superficial SSI and PJIs considering the AUC
(p¼0.35), calibration intercept (p¼0.47), calibration slope
(p¼0.51), and Brier score (p¼0.44; ►Fig. 3).

An example of a local, individual patient-level explanation
for the model predictions by ANN is shown in ►Fig. 4. For a
63-year old obese (BMI: 41 kg/m2) TKA patient with CCI of
3.03, diabetes, and Medicare insurance, who had no history
of alcohol and smoking, the predicted probability of SSI
following primary TKA was 16.3%. A high CCI, high BMI (>
35m/kg2), diabetes, andMedicaid insurance status increased
the probability of SSI, whereas age, no prior history of alcohol
use, and smoking decreased the probability of SSI.

Discussion

Due to the growing attention to predict SSIs following TKA
and to optimize risk factors preoperatively,12 there is an
increasing interest in applyingMLmodels toTKApatient care
with regard to postsurgical infections. In this present study,
we demonstrate excellent performance for all five ML candi-
date models on discrimination, calibration, and decision
curve analysis in terms of predicting superficial and deep
SSIs in patients following primary TKA, with the ANN
demonstrating the strongest performance of all ML models
(AUC¼0.84). Prior works aiming to predict SSI following hip
and knee TJA did not achieve excellent model performance. A
retrospective database study by Inacio et al13 used a pre-
scription-based comorbidity measure to predict PJI within
90 days following hip and knee TJA, reporting an AUC of less
than 0.63 for their modeling techniques. Similarly, Shah et al
did not achieve excellent model predictions (AUC¼0.73) in
their ML study, which intended to predict postoperative
complications such as SSI in patients following primary hip
and knee TJA.14 Our current ML models additionally show a
higher AUC, when compared with recent ML models for the
prediction of SSIs following spinal fusion (AUC¼0.77) and
neurological operations (AUC¼0.76).9,15 Based on the high
accuracy of our ANN models, when compared with prior
literature, the presented ANNmodels have the potential to be
used in real-time patient-specific SSI prediction in primary
TKA patients.

Based on the results of the presented ML models, the
strongest predictors of superficial and deep SSIs following
primary TKA were CCI, obesity (BMI >30kg/m2), and smok-
ing. The model performance did not significantly differ
between predictions for superficial and deep SSIs, probably
due to the fact that prior systematic reviews showed strong
concurrence in terms of risk factors for superficial and deep
SSIs.16 The CCI, themost influential predictor of SSIs, initially
designed to predict mortality, is a highly validated mecha-
nism for quantifying patient comorbidities.17 More recently,
the CCI has been studied as a predictive tool for various
events following primary TJA, including complications,18

readmission rates,19 functional outcomes,20 discharge dis-
position,21 and prolonged length of stay.19 Additionally, the
CCI has been shown to be the predictor of greater hospital
charges and costs associated with TKA.22 Furthermore,

Table 4 Discrimination and calibration of machine learning algorithms on the testing set for TKA patients

Metric Artificial neural
network

Stochastic gradient
boosting

Support vector
machine

Random
forest

Elastic-net
penalized logistic
regression

AUC 0.84 0.79 0.78 0.80 0.80

Intercept 0.09 0.18 �0.21 �0.17 0.18

Slope 1.06 1.27 1.15 0.90 1.10

Brier 0.054 0.055 0.056 0.055 0.054

Abbreviations: AUC, area under the receiver operating characteristic curve; TKA, total knee arthroplasty.
Note: Data was expressed as mean (95% confidence interval). Null model Brier score¼ 0.059.

Fig. 1 Machine learning model for the prediction of surgical site
infection following primary total knee arthroplasty.
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several previous studies support our observation that a
higher number of comorbidities, identified through the
CCI, were associated with a higher risk of SSI.7,13

From this present ANN model, obesity (BMI >30kg/m2

defined as per recommendations of the US Center for Disease
Control23) was the second strongest predictor of superficial
and deep SSIs following primary TKA. Several meta-analyses
have analyzed the relationship between SSI and obesity.24

Although there is no clear cutoff value, a higher BMI is known
to be associated with an increased risk of SSI following TKA,
indicating that BMIs greater than 40 kg/m2 are strongly
correlated with SSIs.25 For this, a plausible explanation
may lie in the observations of previous literature which
demonstrated that obese TKA patients had increased blood
loss, longer surgical times, increased comorbid conditions,
and prolonged postoperative wound drainage.26,27 In terms

of smoking as a strong predictor of SSI following index TKA,
similar to the findings of this present study, a large database
study by Kremers et al has provided comparable outcomes
with an increased risk of SSI following primary THA and TKA
in smokers.28 Several prior works reported that approxi-
mately 7% of TKA patients were current tobacco users,29 and
smoking placed patients at a 3.5% increased risk of SSI
following TKA, when compared with non-smoking TKA
patients.30 Furthermore, the most common cause of revision
TKA in smokers is PJI.31

There is a strong agreement in terms of risk factors of SSI
development following primary TKA between the present
ML study and prior retrospective work.26,28 However, the
present study identified increased importance of obesity
than previously reported.8,32 With previous studies report-
ing a risk of 1–2% for the development of PJI solely due to
obesity,32 this present ML study shows a greater significance
of a high BMI (3.8%). This may be based on the increased
accuracy of data analysis as provided by ML algorithms,

Fig. 3 Calibration plot for the neural network model for the predic-
tion of surgical site infection following primary TKA. TKA, total knee
arthroplasty.

Fig. 4 Example of individual patient-specific explanation generated
by the neural network model for TKA patients. TKA, total knee
arthroplasty.

Fig. 2 Global variable importance plot for the prediction of surgical site infection following primary TKA. TKA, total knee arthroplasty.
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which possess the ability to accurately identify complex
relationships between clinical variables, even in noisy and
incomplete datasets.33 Furthermore, ML algorithms provide
risk factor estimates within seconds, thereby providing a
viable tool to assist clinical decision-making. Consequently,
ML tools have seen a rapid rise over recent years inmanyfields
ofmedicine. TheuseofML algorithms in clinical environments
has thepotential to support clinicaldecision-making througha
data-driven driven approach that provides highly accurate
results in real time. Therefore, it can overcome prior
approaches that solely rely on the experience of orthopaedic
surgeons, which may be of benefit especially in patients with
complex medical history. However, there may be concerns
associatedwith theuseofML technology regarding the limited
access to health care institutions for patients at the risk of
postoperative complications. This is based on the current
reimbursement models, where patients with an increased
amount of postoperative complications are less profitable to
the health care institutions; therefore, these patientsmay face
challenges to access health care providers.

The results of the current study provide practical infor-
mation that may be clinically useful for the preoperative
identification of patients with a high probability of superfi-
cial or deep SSI following primary TKA, solely predicted by
ML models from patient demographic data and medical
comorbidities. To be used as a reliable predictive tool in
clinical practice, the ability to accurately classify the good
and the poor prognosis is required. Since the occurrence of
SSI is strongly associated with poor outcomes following
primary TKA, this stratification using ANN models could
be helpful to arthroplasty surgeons and patients during pre-
operative counseling and patient optimization based on pre-
operative patient data. Additionally, for high-risk TKA
patients, determined through their estimated risk for SSI,
an extra-preventative health care resource could be applied
to optimizemodifiable risk factors tominimize the riskof SSI.
These extra-preventative health care resources may include
preoperative rehabilitation programs as well as preoperative
counseling and educational seminars to optimize TKA
patients prior to surgery.

The present study has several potential limitations. First,
this study has inherent disadvantages of a retrospective study
design such as bias and an inability to control confounding
factors. Second, although a large number of primary TKA
patients were included in this single-institution study, the
number of patients with postoperative SSI was still relatively
small. Selection bias from a limited database, an inseparable
limitation of ML models, can render poor prognostic gener-
alizability of the presented ML models. To address this selec-
tion bias, larger datasets sampling patients with a broad
demographic spectrum may be needed in future studies.
Nonetheless, the presented five ML algorithms demonstrated
an accuracy of greater than 94%, highlighting the strong
predictive ability of these computational tools. Third, the ML
models were only validated internally, which may limit the
generalizability in clinical practice as theremay be differences
in the patient population between our tertiary referral center
and alternative health care providers across the country.

Finally, most of the patient risk factors evaluated in this study
were listed as binary including the presence of depression or
diabetes or alcohol consumption; thus, the effect of disease
severity was not evaluated in this study. However, similar
limitationswere reported inprior retrospective studies on this
topic.34–36

In conclusion, this study developed and validated five ML
models for the prediction of patient-specific SSI following
primary TKA. The study findings show excellent model
performance, with the best modeling accuracy of ANNs.
This highlights the potential of these computational models
to assist in preoperative patient optimization and counseling
to maximize outcomes in TKA patients.
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