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Introduction

The outbreak of severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2)-mediated coronavirus disease-
2019 (COVID-19) has severely decimated the global
health community, with data suggesting a weakened
immune system in individuals presenting with increased
severity of disease.1–4 Although asymptomatic in most
cases, some critically ill COVID-19 patients exhibit rapid
deterioration characterized by life-threatening acute re-
spiratory distress syndrome, neutrophilia, and a cytokine
storm resulting in systemic inflammatory response syn-
drome (SIRS), sepsis and coagulopathy, and multi-organ

failure. However, the exact mechanism behind this
remains unknown.

Excludingwell-known respiratory symptomsof SARS-CoV-2
infections, many patients reportedly develop gastrointestinal
symptoms, including diarrhea, nausea, vomiting, and abdomi-
nal pain. In some cases, such symptomsmanifested earlier than
the classic fever and pulmonary manifestations of COVID-19.5

Furthermore, numerous reports exist reporting hepatobiliary
involvement in COVID-19 patients, as evidenced by abnormal
liver function tests (LFTs), with their degree of elevation corre-
latingwith disease severity. Indeed, liver injury—manifesting as
elevated LFTs with mild/moderate elevations in aspartate ami-
notransferase (AST) and alanine aminotransferase (ALT)—in
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Abstract Some coronavirus disease-2019 (COVID-19) patients exhibit multi-organ failure, which
often includes the liver. Indeed, liver disease appears to be an emerging feature of
COVID-19 infections. However, the exact mechanism behind this remains unknown.
Neutrophil extracellular traps (NETs) have increasingly been attributed as major
contributors to various liver pathologies, including sepsis, ischemic-reperfusion (I/R)
injury, and portal hypertension in the setting of chronic liver disease. Although vital in
normal immunity, excessive NET formation can drive inflammation, particularly of the
endothelium. Collectively, we propose that NETs observed to be elevated in severe
COVID-19 infection play principal roles in liver injury in addition to acute lung injury.
Herein, we discuss the potential mechanisms underlying COVID-induced liver injury
including cytopathic effects from direct liver infection, systemic inflammatory re-
sponse syndrome, and hypoxic injury, encompassing I/R injury and coagulopathy.
Further research is required to further elucidate the role of NETs in COVID. This holds
potential therapeutic significance, as inhibition of NETosis could alleviate the symp-
toms of acute respiratory distress syndrome and liver injury, as well as other organs.
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COVID-19 patients is reported to range from 14.8 to 53%.6–8

Thesefindingsmay be accompanied by slight elevations in total
bilirubin and, in severe case, hypoalbuminemia.9 With disease
progression frommild to severe, LFTs correspondingly increase;
AST and ALT elevations are reported to be present in approxi-
mately 56% of severely affected patients.7 In short,
varying degrees of liver pathology appear to be a salient feature
of COVID-19 patients suffering frommild/moderate and severe
infections.

Neutrophil extracellular traps (NETs)—released by neu-
trophils—have increasingly been attributed as major con-
tributors to various liver pathologies, regardless of etiology,
including sepsis, ischemic-reperfusion (I/R) injury, and por-
tal hypertension.10 Historically, neutrophils were confirmed
to be the first immune effector cells recruited to sites of
inflammation, where they mediate host defense through
degranulation (antimicrobial release) and phagocytosis of
offending microbes. In 2004, however, a novel third function
was identified: NETs,11 which are fibrous, DNA-based, web-
like structures released by activated neutrophils by a unique
form of programmed cell death termed as NETosis. NETs play
vital roles in immunity by trapping and neutralizing
microbes, preventing their dissemination. However, dysre-
gulated NET production has been implicated as central to
many immune-related diseases.12 Indeed, NET secretion can
damage normal cells in close enough proximity through
various cytotoxic elements and, consequently, propagate
proinflammatory responses.12

NET secretion is primarily induced by proinflammatory
cytokines such as IL-1β released frommacrophages secondary
to inflammasome activation. Intriguingly, high levels of
inflammasomes and its induced cytokines (i.e., IL-1β and IL-
18) have been observed in COVID-19 patients, possibly impli-
cating inflammasome activation as central to the SIRS, sepsis,
and coagulopathy observed in severe COVID-19.4 Considering
the links between inflammasomes and NETs and the fact that
neutrophilia is a cardinal feature of severe COVID-19 infec-
tions,13–15 we propose that excessive NET production by acti-
vated neutrophils participates in the pathogenesis of COVID-19,
paying special attention to liver pathology. Recently, the role of
NETs in COVID-19 lung injury has been confirmed by histo-
pathological examinations.16,17 Numerous clinical trials are
accordingly ongoing to evaluate the efficacy of NET-inhibiting
or NET-lysing drugs in the treatment of COVID-19 patients.
However, the pathomechanisms underlying systemic symp-
toms in severe patients still remain to be proven, which is the
premise ofour postulation. Future researchaiming to substan-
tiate NETs as importantmediators ofmulti-organpathology in
severe COVID-19 could rationalize treatments for systemic
COVID-19 symptoms.

Neutrophil Extracellular Traps: Structure and Function
Neutrophils are the most abundant circulating immune cells
and characterize acute inflammation. Neutrophils contrib-
ute to host defense primarily via phagocytosis, generation of
ROS, and degranulation. However, neutrophils have been
implicated in the pathophysiology in a remarkable spectrum
of diseases, including cardiovascular, inflammatory, autoim-

mune, metabolic, infectious, and septic conditions, through
the production of NETs.18 NETs are extracellular structures
produced by a programmed form of neutrophil death termed
as NETosis, resulting in the extrusion of neutrophil DNA and
histones, which form a fibrous structure entrapping neutro-
phil granule proteins such as neutrophil elastase (NE) and
neutrophil cytosolic proteins such as myeloid-related pro-
tein 14 (MRP14).10,19NETs play key roles in immune defense:
histones, NE, and MRP14 exhibit bactericidal and antimicro-
bial properties; additionally, due to their fibrous structure,
NETs occupy large amounts of space, they sequester bacteria
in areas where the concentration of its antimicrobial com-
ponents is high while simultaneously preventing microbial
dissemination.12,20–22

Although vital in normal immunity, excessive NET for-
mation can drive inflammation via damage-associated
molecular patterns (DAMPs) and by host cell injury, partic-
ularly of the endothelium, through histones.23 Additionally,
the fibrous structure of NETs constitutes a platform towhich
red blood cells (RBCs), platelets, fibrinogen, and fibronectin
can bind, precipitating thrombus formation.24,25 According-
ly, NETs are well-established contributors to various disease
processes, including vascular diseases such as atherosclero-
sis and hypercoagulability, metabolic diseases such as
diabetes, autoimmune diseases such as systemic lupus
erythematosus and rheumatoid arthritis, and, the focus
of this manuscript, systemic inflammation in severe
COVID-19.18,26

COVID-19 and Liver Disease
Numerous studies have assessed how the liver is affected
during COVID-19, with abnormal LFTs mainly being charac-
terized by mild elevations in serum AST/ALT. Two to eleven
percent of patients with COVID-19 have pre-existing liver
diseases, and 14–53% of cases feature elevated AST levels,
with its magnitude of elevated correlating with disease
severity.7 Indeed, a study reported AST elevations in 62%
of ICU-admitted patients, compared with 25% in patients
who did not require ICU admission.27 Accompanying abnor-
malities in serum bilirubin and, in severe cases, hypoalbu-
minemia, are also observed. Severe abnormalities in liver
enzymes are also associated with a higher mortality.7,9,19,28

Histopathological findings of liver autopsy specimens in
patients who succumbed to COVID-19 demonstratedmacro-
vesicular steatosis with mild lobular and portal inflamma-
tion. In some cases, vascular pathologies in the form of
sinusoidal microthrombi were also observed.8,17,29

Collectively, these results implicate COVID-19 liver dis-
ease as being more prevalent in severe cases compared with
mild cases. Since early on during the pandemic, concerns
have been documented that patients with chronic liver
disease may be increasingly susceptible to severe COVID-
19 infections. These postulations are informed by several
factors: (1) overlapping comorbidities associatedwith severe
COVID-19 and liver diseases, including age, hypertension,
and diabetes, and (2) the fact that chronic liver disease
induces coagulopathy, a major risk factor for the develop-
ment of severe COVID.30 Lastly, the presence and degree of
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liver injury in COVID-19 has an important bearing on treat-
ment. Mild COVID-19 liver injury is self-limiting and typi-
cally resolves without any specific treatment; in this case,
therapy aims to actively treat primary disease. In contrast,
acute liver injury in severe COVID cases—considered to be
due to cytokine storms and circulatory collapse—requires
liver protective drugs,7 with simultaneous respiratory and
circulatory support.31

The pattern and frequencies of LFT abnormalities are
similar regardless of the presence of underlying chronic liver
disease.30 Furthermore, themechanismbehind SARS-CoV-2-
induced liver disease remains uncertain but is likely multi-
factorial. In this article,wediscuss (1) cytopathic effects from
direct liver infection, (2) SIRS, and (3) in severe cases, hypoxic
injury encompassing I/R injury and coagulopathy.

Direct Infection
As mentioned prior, LFT abnormalities mainly feature AST
and ALT abnormalities. Intriguingly, AST and ALT elevations
in COVID-19 patients do not correlate with inflammatory
markers such as CRP or markers of rhabdomyolysis, hinting
at the direct infection of the liver as being causal.30 The
angiotensin-converting enzyme 2 (ACE2) receptor has been
established as the portal of entry of SARS-CoV and SARS-
CoV-2 into cells. Following attachment to ACE2 to the spike
(S) protein, cleavage of the S protein by the transmembrane
serine protease 2 allows internalization of the virus by
endocytosis.32 The tropism of SARS-CoV-2 for the liver stems
from the expression of ACE2 on hepatocytes and, in particu-
larly high levels comparable to alveolar cells of the lung, on
cholangiocytes (cuboid epithelial cells of the bile duct).33,34

Furthermore, the isolation of SARS-CoV-2 RNA from stool
samples of infected COVID-19 patients raises concerns about
fecal-oral transmission.19

However, direct viral infection seems unlikely when
correlated with the histopathologic evidence, since rather
than the expected intracellular viral inclusions with con-
comitant lymphocytic infiltrates manifesting as piecemeal
necrosis characteristic of viral hepatitis,35 histopathology
reports demonstrate microvesicular and macrovesicular
steatosis. These observations were made in autopsies with
SARS-CoV-2 as the only risk factor, distinguishing these
lesions from hepatic steatosis due to pre-existing nonalco-
holic fatty liver disease (NAFLD), which is regarded as an
independent risk factor for poor COVID-19 prognosis.36,37

Direct SARS-CoV-2 cytopathic effect-induced mitochondrial
dysfunction has been implicated as potentially causing he-
patic steatosis, a mechanism also seen in NAFLD; these
findings have rationalized postulations that SARS-CoV-2
worsens pre-existing NAFLD-induced steatosis.38 Alterna-
tively, these characteristic histopathologic patterns of liver
injury may also be due to pre-existing obesity and diabetes
mellitus.17

These observations may also perhaps be due to the
induction of endoplasmic reticulum (ER) stress upon the
infection of the hepatocytes. This results in de novo lipo-
genesis.38 In the setting of SARS-2-CoV, as well as the other
coronaviruses, ER stress markers glucose-regulated protein

79 (GRP78) and GRP94 are elevated.38,39 Lipogenesis may
aid in viral replication and exocytosis from the cell. To this
end, enhanced de novo lipogenesis has been suggested to
provide the virus with the vesicular systems necessary for
viral replication and exocytosis.38 Other than ER stress,
lipogenesis is also induced by the mammalian target of
rapamycin (mTOR) pathway. Briefly, mTOR functions as the
principal intracellular nutrient sensor. When nutrient levels
are high, as suggested by the presence of hormones, growth
factors, and glucose, mTOR activates protein synthesis and
lipogenesis.40,41 The mechanisms pertaining to mTOR-
induced lipogenesis involve the activation of SREBP, a
membrane-bound transcription factor, which binds specif-
ic response elements to upregulate the expression of genes
pertaining to cholesterol and fatty acid synthesis.40,42 In
the context of COVID-19, direct infection of hepatocytes
and elevated IL-6—due to the systemic cytokine storm seen
in severe cases—could activate mTOR. Similar observations
are seen in SARS-CoV-1 and MERS-CoV. mTOR, in turn,
inhibits autophagy to prevent viral degradation in auto-
phagolysosomes and enhances lipogenesis and protein
synthesis.43,44 The elevated protein synthesis induced by
mTOR involves the activation of cap-dependent translation
machinery, which is essential to coronavirus replication,
which hijacks this machinery.45 The de novo lipogenesis, as
mentioned above, enhances viral replication and exocyto-
sis. Accordingly, pre-existing mTOR hyperactivity—such as
that seen in obese patients and diabetics—may, at least in
part, explain the increased risk of severe COVID infections
in these patients.23,24

However, since ACE2 is barely expressed on hepatocytes,
further studies investigating SARS-CoV-2 directly infecting
hepatic cells are required. Since cholangiocytic ACE2 expres-
sion is 20 times higher than hepatocytes and evidence of
cholangiocyte proliferation has been observed in the setting
of COVID, suggestions have been made of a compensatory
proliferation of liver cells derived from the bile duct epithe-
lium leading to an increased ACE2 expression in the liver.19

High circulating levels of IL-6, a strong cholangiocellular
mitogenic factor, may contribute to the proliferative
response.38

The Cytokine Storm and SIRS
The majority of COVID-19 patients display little to no symp-
toms, while others suddenly deteriorate and develop severe
fever and pneumonia, culminating in acute severe respirato-
ry distress syndrome and ultimately death. Increasing evi-
dence indicates that this presentation is probably secondary
to a dysregulation of the innate immune response, resulting
in a cytokine storm, systemic inflammatory response syn-
drome, and multi-organ failure, including the liver. Indeed,
levels of numerous pro-inflammatory cytokines, such as IL-
1β, IL-2, IL-6, IL-10, IL-17, TNF, and monocyte chemoattrac-
tant protein 1 are found to be elevated in patients.46

As previously intimated, the inflammasome may play a
significant role in the immunopathogenesis of COVID-19,
suggested by elevated serum levels of the inflammasome-
related cytokines IL-1β and IL-18. Furthermore, the presence
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of inflammasome-related cytokines IL-1β and IL-18 in
COVID-19 patients correlated with disease severity.47,48

Inflammasome activation, regardless of the initiating stimu-
lus, occurs in two steps: a priming stage, with an additional
signal being required for full activation. The priming stage is
constituted by the activation of pattern recognition recep-
tors by DAMPs or pathogen-associated molecular patterns
(PAMPs), which induce the activation of NF-κB promoting
the gene expression of pro-IL-1β and pro-IL-18 and NOD-like
receptor family pyrin domain-containing 3 (NLRP3).49–51

The second activation signal could be provided by several
extracellular stimuli, including membrane damage, activa-
tion of ion channels, and reactive oxygen species (ROS), all of
which promote NLRP3 oligomerization which, along with
adaptor protein and caspase-1, forms the inflammasome and
cleaves pro-IL-1β and pro-IL-18 into the active IL-1β and IL-
18, respectively.49,52,53 The last step of this process is the
caspase-1-mediated cleavage of Gasdermin D (GSDMD),
resulting in the formation of pores in the cell membrane to
allow for the release of IL-1β and IL-18 aswell as inducing cell
death by pyroptosis, producing DAMPs.54,55 IL-1β can also
further activate the inflammasome (i.e., a feedforwardmech-
anism).3 This process collectively intensifies the immune
response but, if not tightly regulated, can lead to massive
infiltration of activated neutrophils with subsequent NETo-
sis, activation of macrophages, and an exaggerated cytokine
response leading to substantial tissue damage.51,56,57

In the context of coronaviruses, SARS-CoV directly acti-
vates the NLRP3 inflammasomes via its E protein and viro-
porin 3a. Since significant homology exists between SARS-
CoV and SARS-CoV-2, there is likely significant overlap
regarding pathophysiology. Both E protein and 3a protein
behave as ion channels (viroporins): E protein associates
with the ER membrane, causing leakage of Ca2þ into the
cytosol; in contrast, viroporin 3a inserts at the cell mem-
brane, promoting Kþ efflux.54,58 The consequent ionic im-
balance, activation of various intracellular enzymes, and
generation of ROS propagate mitochondrial and lysosomal
membrane injury, which activates the NLRP3 inflamma-
some. Additionally, both E-protein and 3a proteins are found
to activate NF-κB independently to drive the transcription of
pro-IL-1β, proIL-18, and NLRP3.52,53 Accordingly, the NLRP3
inflammasome has gained much attention as a potential
target for therapy given its central role in the pathogenesis
of severe COVID infection.

The liver plays an important role in immune defense,
continuously being exposed to pathogens entering the body
via the gut and containing the largest collection of fixed
macrophages, called Kupffer cells, in the body.59 Although
Kupffer cells do not normally express ACE2 and, therefore,
are not likely the target of direct SARS-2-CoV infection,
monocyte-derived macrophages that replenish Kupffer cells
in the setting of inflammation may provide a route of
extension of the inflammatory stimulus.38 Additionally,
endothelial cells appear to play an important role. Alveolar
endothelial cells are activated in the setting of inflammation,
precipitating a hypercoagulable state and neutrophil activa-
tion with subsequent NETosis.6 Therefore, widespread

pyroptosis of macrophages not only in the lung but also in
the liver followed by vigorous inflammation and hypercoag-
ulability via endothelial cell activation is perhaps partly
responsible for the lobular and portal inflammation, micro-
vascular thrombosis, hepatic sinusoidal congestion, and
necrosis observed in liver autopsies of deceased COVID-19
patients (readers are referred to17 for more detailed descrip-
tions). This could manifest clinically as hepatomegaly and
elevated LFTs, with concomitant jaundice and hepatic en-
cephalopathy, and elevated LDH. Serum LDH, in particular, is
used as a marker of various inflammatory states and is
significantly elevated in severe COVID-19 patients compared
with those without the severe disease and, thus, can be used
as a marker for severity and prognosis.60–62

Ischemic-Reperfusion Injury
The liver is highly vascular, and therefore, susceptible to
hypoperfusion secondary to circulatory disturbances. Cardi-
ac failure, respiratory failure, and circulatory shock are well
established as mechanisms causing passive congestion and
hypoperfusion of the liver resulting in centrilobular ischemic
necrosis.17,63,64 In the context of COVID-19, acute respiratory
distress syndrome (ARDS) induces severe hypoxia that leads
to ischemic liver damage characterized by steatosis and
subsequent hepatocyte death.31 This is followed by reperfu-
sion characterized by neutrophil infiltration with the gener-
ation of ROS, all of which propagate further liver injury via
lipid peroxidation and oxidation of DNA and proteins.10,31

Hypoxia independently imposes oxidative stress that
promotes the generation of ROS, which have been identified
as one of the key triggers of the inflammasome, evidenced by
the chemical inhibition of ROS generation curbing inflam-
masome activation in response to several different stimuli.65

The inflammasome-related cytokines IL-1β and IL-18 as well
as DAMPs released by inflammasome-induced pyroptosis
will exacerbate reperfusion injury, setting up a self-reinforc-
ing loop of inflammation and tissue damage, and, as such,
inflammasome-mediated inflammation is considered a po-
tential therapeutic target to alleviate hepatic I/R injury in
various surgical settings.66 Such principles could potentially
translate over to I/R injury in severe COVID-19 cases, where
inflammasome inhibition can alleviate symptoms of hypoxic
damage. Indeed, I/R resulting in hypoxic hepatitis secondary
to anoxia induced by respiratory failure is seen in severe
cases.67

The Potential Role of Nets in COVID/Liver Disease
In short, COVID-induced hepatic disease is likely to involve a
combination of several mechanisms, including direct infec-
tion, cytokine storm and SIRS, thrombotic microangiopathy,
and, in severe cases, hypoxic hepatitis. With increasing
grades of disease severity, more of these pathomechanisms
may get involved to cause liver injury, which manifests
clinically as a mild-to-moderate rise of AST/ALT and a
concomitant drop in serum albumin in severe cases.7,63

The key players mediating each of these processes remain
unelucidated, but the usual mediators, endothelial cell dam-
age with neutrophils and platelets, likely play a role.68
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Identifying the major contributors to the pathogenesis of
COVID-induced liver disease will likely have significant
therapeutic implications, not only by revealing novel thera-
peutic targets but also perhaps by susceptible patient demo-
graphics and reliable prognostic biomarkers.

Recently, NETs have been implicated in the pathogenesis
of severe COVID, characterized by a sudden, rapid deteriora-
tion of patients culminating as ARDS.15,57,68 This hypothesis
was supported by neutrophilia, elevatedNETmarkers such as
cell-free DNA and histones, and SARS-CoV-2 patient sera
being able to induceNET formation.69–71 Lastly, the degree of
NETmarker elevation correlates with pneumonia-associated
lung injury.72 The role of NETs in the pathophysiology of
COVID is thought to be a primary result of vascular damage
and the consequent exacerbation of inflammation with
hypercoagulability, manifesting clinically as ARDS and
multi-organ failure, including the liver.21,73,74 Indeed, liver
injury is a consistent feature of COVID-19, with histopatho-
logical evidence demonstrating patchy necrotic areas akin to
NET-damaged livers.75

The liver functions as a frontline immune organ due to its
unique blood supply, filtering the blood of any pathogens or
PAMPs entering via the gut and subsequently eliciting appro-
priate immune responses. Furthermore, the liver has been
reported to be the primary organ for bacterial sequestration
which is thought to be fundamentally through the actions of
two immune cells: Kupffer cells, the intrasinusoidal resting
macrophages of the liver, through phagocytosis, and neutro-
phils,which are recruited to the liver in thesettingof infection,
via NET formation.71,76 Indeed, apart from COVID, NETs have
beenwell-establishedaskeyplayers inpropagating liver injury
in several pathologies, including alcohol-associated liver inju-
ry, portal hypertension in chronic liver disease, sepsis, liver
transplantation, and even cancer.10,18

Potential Role of NETs in COVID-Induced Endotheliopathy
The role of NETs in multiorgan failure characterizing severe
COVID-19 has been confirmed in several studies.13,21,51,75

Both arterial and venous thrombosis are detected in COVID-
19 patients, causing micro- and macrovascular thrombotic
phenomena including acute coronary syndrome, deep vein
thrombosis, and pulmonary embolism, with concomitant
elevation in NET markers as well as neutrophil-platelet
aggregates.69,77 However, a current limitation in the study
of NETs in COVID-19 is the lack of data on their role in mild-
to-moderate COVID infections. COVID-19 patients, regard-
less of disease severity, demonstrate neutrophilia compris-
ing of immature neutrophils, which are known to show
increased NETosis at baseline.68,75,78 As such, the role of
NETs in mild-to-moderate disease may also exist. In the
context of liver disease, elevated AST/ALT levels are also
seen in non-severe COVID-19 patients.9 With the current
opinion that multiorgan manifestations of COVID-19
are secondary to a hyperinflammatory cytokine storm,
why do moderate cases, which do not exhibit a hyperin-
flammatory state, exhibit elevated LFTs?

Intriguingly, several recent studies have suggested that
accepting a cytokine storm as the principal mediator of

COVID-19 may be premature. These postulations are based
on the magnitude of serum cytokine elevations being insuffi-
cient to cause such symptoms.79,80 To this end, a recent review
article stated that organ-specific cytokines should be investi-
gated.68 In such a scenario, NETs may also be involved.
Mounting evidence suggests that the pathophysiology of
COVID-19 revolves around endothelial cell damage—so-called
endotheliitis or endotheliopathy.81–84 ACE2 is expressed on
endothelial cells, and SARS-CoV-2 has consistently been
detected within endothelial cells.63,81,85 Endothelial cell acti-
vation and damage expose subendothelial collagen and other
thrombogenic substances which attract platelets and neutro-
phils to collectively promote NETosis.24 NETs can also directly
activate endothelial cells as well as induce endothelial cell
death through histones.23,86,87 Therefore, since immature
neutrophilia and elevated NET markers are observed in
COVID-19 patients, their potential accumulation in the liver
may represent a key trigger for endothelial cell injury and
microvascular thrombotic events in COVID-19 patients in
severe as well as non-severe cases.

Sepsis
Sepsis is characterized by a deadly inflammatory
syndrome secondary to a dysfunctional immune response to
infection. The liver is principally responsible for the clearance
of bacteremia in the setting of sepsis through Kupffer cells by
phagocytosis and neutrophils through NET formation. Liver
sinusoidal endothelial cells (LSECs) upregulate TLR4 on their
surface secondary to infection, facilitating retention of neu-
trophils within hepatic sinusoids by mediating neutrophil
adherence to hyaluronan via CD44.10,88 Hypoxia-induced in-
juryof LSECspromotes thesurfaceexpressionofp-selectinand
von-Willebrand factor, which contributes to the recruitment
and activation of neutrophils. The result of this is two-fold:
NET production in the liver exceeds that of other tissues and,
due to increased retention of NETs, the liver may also retain
circulating NETs originally produced in other organs.82,88

While NET formation contributes significantly to bacterial
sequestration and, therefore, plays a key role in immune
defense, the high intrahepatic concentration of NETsmay not
only contribute to enhanced microbial sequestration but
also, through its cytotoxic elements including but not limited
to histones, NE, and cathepsin G, damage the liver and induce
or exacerbate inflammatory responses and propagate further
liver injury. Accompanying the inflammatory response in
sepsis is disseminated intravascular coagulation (DIC), which
is characterized by a consumption coagulopathy. NETs are
thought to contribute to DIC through binding platelet, RBCs,
and fibrinogen to precipitate thrombus formation.24,57,89

Negatively charged DNA activates the intrinsic pathway of
the coagulation cascade, and histones promote a hypercoag-
ulable state by causing endothelial cell damage. Proteases
within NETs, such as NE, are thought to activate the intrinsic
and extrinsic pathways of coagulation.90 Accordingly, re-
search studying the significance of NET-mediated liver dam-
age reports that the genetic inhibition of NET formation and
various components of NETs greatly ameliorate symptoms of
liver damage.10,91

Journal of Health and Allied SciencesNU Vol. 12 No. 3/2022 © 2022. Nitte (Deemed to be University). All rights reserved.

NETs and COVID-19 Liver Disease Alkattan et al. 239



The endogenous stimulants of NET formation are believed
to be histones, hypoxia, and high mobility group box protein
1 (HMGB1), which are released by irreversibly injured cells
and function as DAMPs.86,92,93 A study showed that treating
neutrophilswith exogenous histones orHMGB1demonstrat-
ed a proportional increase in NET formation.20 HMGB1 is a
nonhistone protein normally linked to chromatin. Its trans-
location to the cytoplasm and subsequent extrusion into the
extracellular space are mediated by high levels of NLRP3
inflammasome activity in immune cells, which simulta-
neously cause pyroptosis resulting in the production of
more DAMPs to augment the inflammatory response.54

Given the exaggerated NLRP3 inflammasome activity char-
acteristic of severe COVID infection and its role in propagat-
ing the cytokine storm, inflammasome-mediated HMGB1
release into the extracellular spacemay induce excessiveNET
formation which further exacerbates the disease.

Conclusion and Perspectives

Collectively, we propose that NETs—observed to be elevated
in COVID infection—play principal roles in liver injury in
addition to acute lung injury. In support of our findings,
serumNETmarkers are elevated in COVID-19 patients, which
correlate with disease severity70,71; well-established
inducers of NETosis, such as endothelial cells and proinflam-
matory cytokine IL-1β, are confirmed to play a major role in
COVID-19 pathogenesis,51,55,94 NETs play key roles in liver
disease regardless of etiology,10 and other, similar, immune-
related diseases feature NETs,12,26,95 and NETs are consis-
tently detectedwithin pulmonary,75,96 renal,16 and cardiac97

microthrombi in COVID-19 patients.
Notably, the prognostic significance of LFT abnormalities in

COVID-19 patients remains uncertain. However, since the
onset of the pandemic, concerns have been raised about the
susceptibility of chronic liver disease patients of COVID-19,7,30

as these conditions share many of the same risk factors,
including age, obesity, and diabetes. Additionally, advancing
liver disease is associated with metabolic/endocrine derange-
ments, immune dysregulation, and coagulopathy, all of which
increase the risk of severe COVID-19.30 Therefore, futurework
should aim to substantiate the prognostic value of LFTs in
COVID-19patientsand, inkeepingwith thepresentdiscussion,
evaluate potential relationships between liver abnormalities
and NETs to inform therapeutic strategies to ameliorate this
condition.

Further research is required to confirm the role of NETs in
COVID-19. This holds potential therapeutic significance, as
inhibition of NETosis could alleviate symptoms of ARDS and
liver injury, as well as other organs because ARDS creates a
hypoxic internal environment and liver injury manifests as
metabolic disturbances detrimental to all organ systems. A
likely challenge in the clinical application of such drugs will
be the identification of appropriate patient demographics in
which these drugs are indicated. Indeed, the potential clini-
cal benefit of NET inhibition has to be counterbalanced with
the possible deleterious effects these inhibiting key immune
mediators could have on the patient trajectory. Nevertheless,

given the central role of NETs inmediating lung, liver, kidney,
and cardiac pathologies in COVID-19, numerous clinical
trials are ongoing to evaluate the efficacy DNase-1
(dornase-alfa), a NET-lysing drug, in combating COVID-19.98
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