Der Klinikarzt 2016; 45(02): 74-81
DOI: 10.1055/s-0042-101531
Schwerpunkt
© Georg Thieme Verlag Stuttgart · New York

Rationelle Lipiddiagnostik – Labordiagnostik bei Hyper- und Dyslipoproteinämie

Rational lipid diagnosis – Laboratory diagnostics in hyper- and dyslipoproteinaemia
Tanja Grammer
1   Mannheimer Institut für Public Health, Sozial- und Präventive Medizin, Medizinische Fakultät Mannheim, Universität Heidelberg
,
Hubert Scharnagl
2   Klinisches Institut für Medizinische und Chemische Labordiagnostik, Medizinische Universität Graz, Graz (Österreich)
,
Winfried März
2   Klinisches Institut für Medizinische und Chemische Labordiagnostik, Medizinische Universität Graz, Graz (Österreich)
3   Synlab Akademie, Synlab Holding Deutschland GmbH, Mannheim
4   Medizinische Klinik V (Nephrologie, Hypertensiologie, Rheumatologie, Endokrinologie, Diabetologie), Medizinische Fakultät Mannheim, Universität Heidelberg
› Author Affiliations
Further Information

Publication History

Publication Date:
21 March 2016 (online)

Klinisch bleiben Störungen des Fettstoffwechsels oft ohne Symptome. Hinweisend können Hauterscheinungen sein. Sekundäre Hyperlipoproteinämien (HLP) sind häufiger als primäre; sie können durch die Behandlung der Grunderkrankung (teilweise) gebessert werden. Neben Cholesterin, Triglyzeriden, LDL-Cholesterin (LDL-C) und HDL-Cholesterin (HDL-C) sind meist Bestimmungen von Glukose, HbA1C, TSH, Transaminasen, Kreatinin, Harnstoff, Eiweiß und Eiweiß im Urin sinnvoll. Da praktisch alle Routinemethoden für LDL-C durch hohe Triglyzeride gestört werden, ist bei Triglyzeriden über 400 mg/dl (4,7 mmol/l) eine Lipoproteinelektrophorese indiziert. Primäre HLP haben bekannte oder noch nicht bekannte genetische Ursachen. An eine differenzialdiagnostisch bedeutsame primäre HLP ist vor allem dann zu denken, wenn es sich um junge Patienten handelt, die Konzentrationen des LDL über 190 mg/dl (4,9 mmol/l) und/oder der Triglyzeride über 200 mg/dl (2,3 mmol/l) liegen und eine sekundäre HLP (Adipositas, Alkohol, Diabetes mellitus, Nierenerkrankungen) ausgeschlossen ist. Die Basisdiagnostik wird durch die Messung von Lipoprotein (a) (Lp(a)) sinnvoll erweitert. Sie ist indiziert bei intermediärem Risiko für Gefäßerkrankungen, familiärer Hypercholesterinämie, bei Patienten mit frühzeitiger Koronarkrankheit, aber wenig konventionellen Risikofaktoren und bei Patienten mit rapide voranschreitender Atherosklerose. Konzentrationen über 30 mg/dl sollten dazu veranlassen, LDL besonders intensiv zu behandeln. Die genetische Diagnostik kommt bei Verdacht auf primäre HLP infrage. Sie ist am häufigsten indiziert bei Verdacht auf familiäre Hypercholesterinämie (FH, autosomal dominante Hypercholesterinämie, ADH) und wird bereits in Leitlinien empfohlen.

Disorders of lipid metabolism are frequently clinically asymptomatic. Typical skin lesions, however, can be indicative. Secondary hyperlipidemias are more common than primary ones; they can be improved at least partially by treating the underlying disease. In addition to cholesterol, triglycerides, LDL cholesterol and HDL cholesterol glucose, HbA1C, thyroid stimulating hormone, transaminases, creatinine, urea, protein and protein in the urine should be measured. Since virtually all routine methods for LDL cholesterol are biased by high triglycerides, lipoprotein electrophoresis should be ordered if triglycerides exceed 400 mg/dl (4,7 mmol/l). Primary hyperlipidemias have known or yet unknown genetic causes. Primary hyperlipidemias should be taken into consideration in young patients with an LDL cholesterol above 190 mg/dl (4,9 mmol/l) and/or triglycerides above 200 mg/dl (2,3 mmol/l) and if secondary hyperlipidemias (obesity, alcohol, diabetes mellitus, kidney disease) have been ruled out. The basic diagnostics is usefully extended by the measurement of lipoprotein (a). It is indicated at intermediate risk of vascular disease, in familial hypercholesterolemia, in patients with premature coronary disease in the absence of conventional risk factors and in patients with rapidly progressing atherosclerosis; at concentrations above 30 mg/dl LDL cholesterol should be lowered intensely. Genetic testing is used in suspected primary hyperlipidemia. It is most frequently indicated in suspected familial hypercholesterolemia and already recommended in guidelines.

 
  • Literatur

  • 1 Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of Low-Density Lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972; 18: 499-502
  • 2 Scharnagl H, Nauck M, Wieland H, März W. The Friedewald formula underestimates LDL cholesterol at low concentrations. Clin Chem Lab Med 2001; 39: 426-431
  • 3 Martin SS, Blaha MJ, Elshazly MB, Brinton EA, Toth PP, McEvoy JW et al. Friedewald-estimated versus directly measured low-density lipoprotein cholesterol and treatment implications. J Am Coll Cardiol 2013; 62: 732-739
  • 4 Langlois MR, Descamps OS, van der Laarse A et al. Clinical impact of direct HDLc and LDLc method bias in hypertriglyceridemia. A simulation study of the EAS-EFLM Collaborative Project Group. Atherosclerosis 2014; 233: 83-90
  • 5 Miller WG, Myers GL, Sakurabayashi I et al. Seven direct methods for measuring HDL and LDL cholesterol compared with ultracentrifugation reference measurement procedures. Clin Chem 2010; 56: 977-986
  • 6 Miida T, Nishimura K, Okamura T et al. Validation of homogeneous assays for HDL-cholesterol using fresh samples from healthy and diseased subjects. Atherosclerosis 2014; 233: 253-259
  • 7 Perk J, De Backer G, Gohlke H et al. European Guidelines on cardiovascular disease prevention in clinical practice (version 2012). The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts). Eur Heart J 2012; 33: 1635-1701
  • 8 Reiner Z, Catapano AL, De Backer G et al. ESC/EAS Guidelines for the management of dyslipidaemias: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur Heart J 2011; 32: 1769-1818
  • 9 Di Angelantonio E, Sarwar N, Perry P et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA 2009; 302: 1993-2000
  • 10 van der Steeg WA, Holme I, Boekholdt SM et al. High-density lipoprotein cholesterol, high-density lipoprotein particle size, and apolipoprotein A-I: significance for cardiovascular risk: the IDEAL and EPIC-Norfolk studies. J Am Coll Cardiol 2008; 51: 634-642
  • 11 Sorrentino SA, Besler C, Rohrer L et al. Endothelial-vasoprotective effects of high-density lipoprotein are impaired in patients with type 2 diabetes mellitus but are improved after extended-release niacin therapy. Circulation 2010; 121: 110-122
  • 12 Besler C, Heinrich K, Rohrer L et al. Mechanisms underlying adverse effects of HDL on eNOS-activating pathways in patients with coronary artery disease. J Clin Invest 2011; 121: 2693-2708
  • 13 Silbernagel G, Schottker B, Appelbaum S et al. High-density lipoprotein cholesterol, coronary artery disease, and cardiovascular mortality. Eur Heart J 2013; 34: 3563-3571
  • 14 Ritsch A, Scharnagl H, Eller P et al. Cholesteryl ester transfer protein and mortality in patients undergoing coronary angiography: the Ludwigshafen Risk and Cardiovascular Health study. Circulation 2010; 121: 366-374
  • 15 Barter PJ, Caulfield M, Eriksson M et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med 2007; 357: 2109-2122
  • 16 Schwartz GG, Olsson AG, Abt M et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med 2012; 367: 2089-2099
  • 17 Sarwar N, Sandhu MS, Ricketts SL et al. Triglyceride-mediated pathways and coronary disease: collaborative analysis of 101 studies. Lancet 2010; 375: 1634-1639
  • 18 Varbo A, Benn M, Tybjaerg-Hansen A et al. Remnant cholesterol as a causal risk factor for ischemic heart disease. J Am Coll Cardiol 2013; 61: 427-436
  • 19 Crosby J, Peloso GM, Auer P et al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med 2014; 371: 22-31
  • 20 Jorgensen AB, Frikke-Schmidt R, Nordestgaard BG, Tybjaerg-Hansen A. Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. N Engl J Med 2014; 371: 32-41
  • 21 Mikhailidis DP, Elisaf M, Rizzo M et al. “European Panel on Low Density Lipoprotein (LDL) Subclasses”: A Statement on the Pathophysiology, Atherogenicity and Clinical Significance of LDL Subclasses. Current vascular pharmacology 2001; 9: 533-571
  • 22 Ginsberg HN, Elam MB, Lovato LC et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med 2010; 362: 1563-1574
  • 23 Nordestgaard BG, Chapman MJ, Ray K et al. Lipoprotein(a) as a cardiovascular risk factor: current status. Eur Heart J 2010; 31: 2844-2853
  • 24 Kostner KM, März W, Kostner GM. When should we measure lipoprotein (a)?. Eur Heart J 2013; 34: 3268-3276
  • 25 Albers JJ, Slee A, O'Brien KD et al. Relationship of apolipoproteins A-1 and B, and lipoprotein(a) to cardiovascular outcomes: the AIM-HIGH trial (Atherothrombosis Intervention in Metabolic Syndrome with Low HDL/High Triglyceride and Impact on Global Health Outcomes). J Am Coll Cardiol 2013; 62: 1575-1579
  • 26 Darling GM, Johns JA, McCloud PI, Davis SR. Estrogen and progestin compared with simvastatin for hypercholesterolemia in postmenopausal women. N Engl J Med 1997; 337: 595-601
  • 27 Stein EA, Honarpour N, Wasserman SM et al. Effect of the proprotein convertase subtilisin/kexin 9 monoclonal antibody, AMG 145, in homozygous familial hypercholesterolemia. Circulation 2013; 128: 2113-2120
  • 28 Bundesausschuss G. Richtlinie des Gemeinsamen Bundesausschusses zu Untersuchungs- und Behandlungsmethoden der vertragsärztlichen Versorgung. Richtlinie Methoden vertragsärztliche Versorgung, in der Fassung vom 17. Januar 2006, veröffentlicht im Bundesanzeiger 2006 Nr. 48 (S. 1 523), in Kraft getreten am 1. April 2006, zuletzt geändert am 19. Februar 2015, veröffentlicht im Bundesanzeiger (BAnz AT 15.05.2015 B7), in Kraft getreten am 16. Mai. 2015
  • 29 Walldius G, Jungner I, Holme I et al. High apolipoprotein B, low apolipoprotein A-I, and improvement in the prediction of fatal myocardial infarction (AMORIS study): a prospective study. Lancet 2001; 358: 2026-2033
  • 30 Di Angelantonio E, Gao P, Pennells L et al. Lipid-related markers and cardiovascular disease prediction. JAMA 2012; 307: 2499-2506
  • 31 Nauck MS, Nissen H, Hoffmann MM et al. Detection of mutations in the apolipoprotein CII gene by denaturing gradient gel electrophoresis. Identification of the splice site variant apolipoprotein CII-Hamburg in a patient with severe hypertriglyceridemia. Clin Chem 1998; 44: 1388-1396
  • 32 Nordestgaard BG, Chapman MJ, Humphries SE et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur Heart J 2013; 34: 3478-3490
  • 33 Klose G, Laufs U, März W, Windler E. Familial hypercholesterolemia: developments in diagnosis and treatment. Deutsches Arzteblatt international 2014; 111: 523-529
  • 34 Marks D, Thorogood M, Neil HA, Humphries SE. A review on the diagnosis, natural history, and treatment of familial hypercholesterolaemia. Atherosclerosis 2003; 168: 1-14
  • 35 Versmissen J, Oosterveer DM, Yazdanpanah M et al. Efficacy of statins in familial hypercholesterolaemia: a long term cohort study. BMJ 2008; 337
  • 36 Versmissen J, Botden IP, Huijgen R et al. Maternal inheritance of familial hypercholesterolemia caused by the V408M low-density lipoprotein receptor mutation increases mortality. Atherosclerosis 2011; 219: 690-693