Z Orthop Unfall 2016; 154(05): 483-487
DOI: 10.1055/s-0042-105957
Originalarbeit
Georg Thieme Verlag KG Stuttgart · New York

3-D-navigierte Pedikelschrauben der Halswirbelsäule – Erfahrungen und Komplikationsanalyse

3D-Navigated Implantation of Pedicle Screws in the Cervical Spine – Experience and Analysis of Complications
G. Schiffer
1   Unfallchirurgie, Handchirurgie und Orthopädie, Vinzenz Pallotti Hospital, Bergisch Gladbach
,
S. Goldmann
2   Unfall-, Hand- und Ellenbogenchirurgie, Uniklinik Köln
,
C. Faymonville
2   Unfall-, Hand- und Ellenbogenchirurgie, Uniklinik Köln
,
L. Müller
2   Unfall-, Hand- und Ellenbogenchirurgie, Uniklinik Köln
,
G. Stein
2   Unfall-, Hand- und Ellenbogenchirurgie, Uniklinik Köln
› Author Affiliations
Further Information

Publication History

Publication Date:
13 June 2016 (online)

Zusammenfassung

Hintergrund: Die Platzierung transpedikulärer Schrauben stellt an der Halswirbelsäule aufgrund der vorgegebenen Anatomie eine besondere Herausforderung für den Wirbelsäulenchirurgen dar. Im Laufe der letzten 15 Jahre wurden computergestützte Navigationssysteme entwickelt, um diesen operativen Vorgang zu erleichtern und sicherer zu machen. Eine Variante ist die Navigation über eine intraoperative Bildakquise mittels 3-D-Bildwandler.

Patienten/Material und Methoden: In der vorliegenden Studie erfolgt eine retrospektive Auswertung von transpedikulär in dieser Weise eingebrachten Schrauben, welche in einem 6-Jahres-Zeitraum implantiert wurden. Erfasst wurden epidemiologische Daten, OP-Dauer sowie insbesondere die generelle Komplikationsrate sowie die Anzahl an Revisionen und die Gründe hierfür. Als C-Bogen kam der Arcardis Orbic 3D (Fa. Siemens, München) zum Einsatz, der mit dem Navigationssystem VectorVision (Fa. Brainlab, München) gekoppelt wurde.

Ergebnisse: Zwischen Juli 2007 und Juli 2013 wurden an unserem Zentrum insgesamt 207 HWS-Pedikelschrauben bei 58 Patienten eingebracht. Hauptindikationen waren Frakturen (69 %), Rheuma (20,7 %) und Tumoren (8,6 %). Am häufigsten wurden HWK II (53,5 %), HWK VII (10,3 %) und HWK V (8,6 %) instrumentiert. Bei knapp 95 % der Fälle wurde eine intraoperative Kontrolle mit dem 3-D-Bildwandler durchgeführt, hier fand sich in 7,2 % der Fälle eine korrekturbedürftige Schraubenfehllage, die unmittelbar angegangen werden konnte. 10 Patienten mussten revidiert werden, bei 7 lag eine Wundheilungsstörung vor, in 2 Fällen beobachteten wir ein Materialversagen, einmal lag eine Liquorleckage vor. Drei Schrauben (1,5 %) führten zu Vertebralisverletzungen, einmal davon mit letalem Ausgang.

Schlussfolgerung: Die intraoperative 3-D-C-Bogen-Navigation stellt in dem von uns untersuchten Patientengut eine zuverlässige Methode zur transpedikulären HWS-Instrumentierung dar. Durch die intraoperative Lagekontrolle kann noch während des Primäreingriffs auf Schraubenfehllagen reagiert werden. Bei anatomisch bedingter, sehr schlechter Bildqualität verwenden wir oberhalb von C VII in diesen Fällen keine Pedikelschrauben, um eine A.-vertrebralis-Verletzung zu vermeiden.

Abstract

Background: Placing transpedicular screws in the cervical spine is a special challenge for spine surgeons, due to the anatomical features of this part of the spine. During the last 15 years, computer-aided navigation systems have been developed to facilitate this procedure and to make it safer for patients. One option is navigation by intraoperatively acquired data sets with the use of an 3D C-arm.

Patients/Material and methods: Our retrospective study evaluates transpedicular screws in the cervical spine placed by 3D C-arm navigation, within a 6 year period in a level 1 trauma centre. We recorded epidemiological data, operation time and especially general adverse events, as well as revision surgery, including reasons for revision. We used a C-arm Arcardis Orbic 3D (Siemens, Munich), connected to a navigation system (VectorVision, Brainlab, Munich).

Results: Between July 2007 and July 2013, 207 transpedicular screws were placed in 58 patients. The main indications were trauma (69 %), rheumatic diseases (20.7 %) and tumour (8.6 %). The most commonly instrumented cervical spine segments were C2 (53.5 %)%), C7 (10.3 %) and C5 (8.6 %). In nearly 95 % of the cases, we performed an intraoperative 3D scan after screw or k-wire placement to control the screw position. We found unacceptable malposition in 7.2 % of patients. This was corrected at once. Ten patients had to be revised: seven times due to wound problems, twice because of implant failure and once for treatment of CSF leakage. Three screws (1.5 %) led to injuries of the vertebral artery, once with a lethal outcome. Analysis of these cases showed that the 3D scan gave reduced data quality, due to reduced bone density or anatomical factors.

Conclusion: Intraoperative 3D C-arm navigation seems to be a reliable option for transpedicular screw placement in the cervical spine. Complication rates were comparable to published values. 7.2 % of all screws were corrected intraoperatively after a control scan. Therefore possible revisions could be avoided during primary surgery. Analysis of problematic cases led to a change in our treatment strategy: in patients with poor bone quality and/or anatomical problems which lead to 3D scans of poor quality, we avoid transpedicular screw placement in C6 or higher, in order to prevent injuries of the vertebral artery.

 
  • Literatur

  • 1 Karaikovic EE, Daubs MD, Madsen RW et al. Morphologic characteristics of human cervical pedicles. Spine (Phila Pa 1976) 1997; 22: 493-500
  • 2 Abumi K, Kaneda K, Shono Y et al. One-stage posterior decompression and reconstruction of the cervical spine by using pedicle screw fixation systems. J Neurosurg 1997; 90: 19-26
  • 3 Abumi K, Kaneda K. Pedicle screw fixation for nontraumatic lesions of the cervical spine. Spine (Phila Pa 1976) 1997; 22: 1853-1863
  • 4 Abumi K, Shono Y, Ito M et al. Complications of pedicle screw fixation in reconstructive surgery of the cervical spine. Spine (Phila Pa 1976) 2000; 25: 962-969
  • 5 Coric D, Branch CL, Wilson JA et al. Arteriovenous fistula as a complication of C1–2 transarticular screw fixation. Case report and review of the literature. J Neurosurg 2000; 85: 340-343
  • 6 Benzel EC, Connolly PJ. The Cervical Spine. Complications associated with dorsal cervical instrumentation. Philadelphia, Baltimore, New York, London, Buenos Aires, Hong Kong, Sydney, Tokio: Lippincott Williams & Wilkins; 2012: 1240-1246
  • 7 Hamadeh A, Lavallee S, Cinquin P. Automated 3-dimensional computed tomographic and fluoroscopic image registration. Comput Aided Surg 1998; 3: 11-19
  • 8 Hott JS, Deshmukh VR, Klopfenstein JD et al. Intraoperative Iso-C C-arm navigation in craniospinal surgery: the first 60 cases. Neurosurgery 2004; 54: 1131-1137
  • 9 Ishikawa Y, Kanemura T, Yoshida G et al. Clinical accuracy of three-dimensional fluoroscopy-based computer-assisted cervical pedicle screw placement: a retrospective comparative study of conventional versus computer-assisted cervical pedicle screw placement. J Neurosurg Spine 2010; 13: 606-611
  • 10 Xing D, Ma XL, Song DH et al. [Clinical efficiency of computer-assisted pedicle screw placement versus conventional method: a meta-analysis]. Zhongguo Gu Shang 2012; 25: 825-830
  • 11 Johnston TL, Karaikovic EE, Lautenschlager EP et al. Cervical pedicle screws vs. lateral mass screws: uniplanar fatigue analysis and residual pullout strengths. Spine J 2006; 6: 667-672
  • 12 Jones EL, Heller JG, Silcox DH et al. Cervical pedicle screws versus lateral mass screws. Anatomic feasibility and biomechanical comparison. Spine (Phila Pa 1976) 1997; 22: 977-982
  • 13 Kast E, Mohr K, Richter HP et al. Complications of transpedicular screw fixation in the cervical spine. Eur Spine J 2006; 15: 327-334
  • 14 Kosmopoulos V, Schizas C. Pedicle screw placement accuracy: a meta-analysis. Spine 2007; 32: E111-120
  • 15 Aoude A, Fortin M, Figueiredo R et al. Methods to determine pedicle screw placement accuracy in spine surgery: a systematic review. Eur Spine J 2015; 24: 990-1004
  • 16 Mason A, Paulsen R, Babuska JM et al. The accuracy of pedicle screw placement using intraoperative image guidance systems. J Neurosurg Spine 2014; 20: 196-203
  • 17 Hojo Y, Ito M, Suda K. A multicenter study on accuracy and complications of freehand placement of cervical pedicle screws under lateral fluoroscopy in different pathological conditions: CT-based evaluation of more than 1,000 screws. Eur Spine J 2014; 23: 2166-2174
  • 18 Pull ter Gunne AF, Cohen DB. Incidence, prevalence, and analysis of risk factors for surgical site infection following adult spinal surgery. Spine (Phila Pa 1976) 2009; 34: 1422-1428
  • 19 Abbey DM, Turner DM, Warson JS et al. Treatment of postoperative wound infections following spinal fusion with instrumentation. J Spinal Disord 1995; 8: 278-283
  • 20 Roberts FJ, Walsh A, Wing P et al. The influence of surveillance methods on surgical wound infection rates in a tertiary care spinal surgery service. Spine (Phila Pa 1976) 1998; 23: 366-370
  • 21 Koutsoumbelis S, Hughes AP, Girardi FP et al. Risk factors for postoperative infection following posterior lumbar instrumented arthrodesis. J Bone Joint Surg 2011; 93: 1627-1633
  • 22 Sclafani JA, Kim CW. Complications associated with the initial learning curve of minimally invasive spine surgery: a systematic review. Clin Orthop Relat Res 2014; 472: 1711-1717
  • 23 Elliott RE, Tanweer O, Boah A et al. Atlantoaxial fusion with transarticular screws: meta-analysis and review of the literature. World Neurosurg 2013; 80: 627-641
  • 24 Elliott RE, Tanweer O, Boah A et al. Comparison of screw malposition and vertebral artery injury of c2 pedicle and transarticular screws: meta-analysis and review of the literature. J Spinal Disord Tech 2014; 27: 305-315
  • 25 Jarvers JS, Katscher S, Franck A et al. 3D-based navigation in posterior stabilisations of the cervical and thoracic spine: problems and benefits. Results of 451 screws. Eur J Trauma Emerg Surg 2011; 37: 109-119
  • 26 Sakamoto T, Neo M, Nakamura T. Transpedicular screw placement evaluated by axial computed tomography of the cervical pedicle. Spine (Phila Pa 1976) 2004; 29: 2510-2515