Planta Med 2017; 83(05): 482-491
DOI: 10.1055/s-0042-112225
Formulation and Delivery Systems of Natural Products
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Acronychiabaueri Analogue Derivative-Loaded Ultradeformable Vesicles: Physicochemical Characterization and Potential Applications

Martina Di Francesco*
1   Department of Health Sciences, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
,
Rosita Primavera*
2   Department of Pharmacy, University of Chieti – Pescara “G. dʼAnnunzio”, Chieti, Italy
,
Serena Fiorito
2   Department of Pharmacy, University of Chieti – Pescara “G. dʼAnnunzio”, Chieti, Italy
,
Maria Chiara Cristiano
1   Department of Health Sciences, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
,
Vito Alessandro Taddeo
2   Department of Pharmacy, University of Chieti – Pescara “G. dʼAnnunzio”, Chieti, Italy
,
Francesco Epifano
2   Department of Pharmacy, University of Chieti – Pescara “G. dʼAnnunzio”, Chieti, Italy
,
Luisa Di Marzio
2   Department of Pharmacy, University of Chieti – Pescara “G. dʼAnnunzio”, Chieti, Italy
,
Salvatore Genovese
2   Department of Pharmacy, University of Chieti – Pescara “G. dʼAnnunzio”, Chieti, Italy
,
Christian Celia
2   Department of Pharmacy, University of Chieti – Pescara “G. dʼAnnunzio”, Chieti, Italy
3   Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
› Author Affiliations
Further Information

Publication History

received 16 February 2016
revised 15 June 2016

accepted 06 July 2016

Publication Date:
19 August 2016 (online)

Abstract

Elastic and ultradeformable liposomes were synthesized and physicochemically characterized to make suitable topical formulations for delivering the anti-inflammatory and anticancer compound 3-(4′-geranyloxy-3′-methoxyphenyl)-2-trans-propenoic acid. The average sizes of elastic and ultradeformable liposomes are below 300 nm, while the size distribution and Z-potential are below 0.3 and − 25 mV, respectively. The presence of 3-(4′-geranyloxy-3′-methoxyphenyl)-2-trans-propenoic acid does not affect the physicochemical parameters of nanovesicles. Elastic and ultradeformable liposomes show a zero order release kinetic and are stable at room temperature for a long time with or without 3-(4′-geranyloxy-3′-methoxyphenyl)-2-trans-propenoic acid. The ultradeformable liposomes are more deformable than elastic liposomes. These differences may depend on sodium cholate derivatives making nanoformulations. The 3-(4′-geranyloxy-3′-methoxyphenyl)-2-trans-propenoic acid-loaded elastic and ultradeformable liposomes can provide innovative nanotherapeutics-based natural compounds for the potential treatment of cutanous inflammation.

* These authors contributed equally to this work.


Supporting Information

 
  • References

  • 1 Carradori S, DʼAscenzio M, Chimenti P, Secci D, Bolasco A. Selective MAO-B inhibitors: a lesson from natural products. Mol Divers 2014; 18: 219-243
  • 2 Acharya NS, Parihar GV, Acharya RS. Phytosomes: novel approach for delivering herbal extract with improved bioavailability. Pharma Science Monitor 2011; 2: 144-160
  • 3 Huang Y, Yinglan Z, Liu F, Liu S. Nano traditional Chinese medicine: current progresses and future challenges. Curr Drug Targets 2015; 16: 1548-1562
  • 4 Zhang W, Wang S, Zhang R, Zhang Y, Li X, Lin Y, Wei X. Evidence of Chinese herbal medicine Duhuo Jisheng decoction for knee osteoarthritis: a systematic review of randomised clinical trials. BMJ Open 2016; 6: e008973
  • 5 Barone E, Calabrese V, Mancuso C. Ferulic acid and its therapeutic potential as a hormetin for age-related diseases. Biogerontology 2009; 10: 97-108
  • 6 Epifano F, Genovese S, Menghini L, Curini M. Chemistry and pharmacology of oxyprenylated secondary plant metabolites. Phytochemistry 2007; 68: 939-953
  • 7 Miyamoto S, Epifano F, Curini M, Genovese S, Kim M, Ishigamori-Suzuki R, Yasui Y, Sugie S, Tanaka T. A novel prodrug of 4′-geranyloxy-ferulic acid suppresses colitis-related colon carcinogenesis in mice. Nutr Cancer 2008; 60: 675-684
  • 8 Epifano F, Genovese S, Sosa S, Tubaro A, Curini M. Synthesis and anti-inflammatory activity of 3-(4′-geranyloxy-3′-methoxyphenyl)-2-trans propenoic acid and its ester derivatives. Bioorg Med Chem Lett 2007; 17: 5709-5714
  • 9 Di Marzio L, Ventura CA, Cosco D, Paolino D, Di Stefano A, Stancanelli R, Tommasini S, Cannavà C, Celia C, Fresta M. Nanotherapeutics for anti-inflammatory delivery. J Drug Deliv Sci Technol 2015; DOI: 10.1016/j.jddst.2015.10.011.
  • 10 Paolino D, Cosco D, Cilurzo F, Fresta M. Innovative drug delivery systems for the administration of natural compounds. Curr Bioact Compd 2007; 3: 262-277
  • 11 Celia C, Trapasso E, Locatelli M, Navarra M, Ventura CA, Wolfram J, Carafa M, Morittu VM, Britti D, Di Marzio L, Paolino D. Anticancer activity of liposomal bergamot essential oil (BEO) on human neuroblastoma cells. Colloids Surf B Biointerfaces 2013; 112: 548-553
  • 12 Paolino D, Cosco D, Cilurzo F, Trapasso E, Morittu VM, Celia C, Fresta M. Improved in vitro and in vivo collagen biosynthesis by asiaticoside-loaded ultradeformable vesicles. J Control Release 2012; 162: 143-151
  • 13 Ajazuddin. Saraf S. Applications of novel drug delivery system for herbal formulations. Fitoterapia 2010; 81: 680-689
  • 14 Cevc G. Transfersomes, liposomes and other lipid suspensions on the skin: permeation enhancement, vesicle penetration, and transdermal drug delivery. Crit Rev Ther Drug Carrier Syst 1996; 13: 257-388
  • 15 Fresta M, Puglisi G. Corticosteroid dermal delivery with skin-lipid liposomes. J Control Release 1997; 44: 141-151
  • 16 Elsayed MM, Abdallah OY, Naggar VF, Khalafallah NM. Lipid vesicles for skin delivery of drugs: reviewing three decades of research. Int J Pharm 2007; 332: 1-16
  • 17 Caddeo C, Manconi M, Sinico C, Valenti D, Celia C, Monduzzi M, Fadda AM. Penetration enhancer-containing vesicles: Does the penetration enhancer structure affect topical drug delivery?. Curr Drug Targets 2015; 16: 1438-1447
  • 18 Godin B, Touitou E. Transdermal skin delivery: predictions for humans from in vivo, ex vivo and animal models. Adv Drug Deliv Rev 2007; 59: 1152-1161
  • 19 Paolino D, Lucania G, Mardente D, Alhaique F, Fresta M. Ethosomes for skin delivery of ammonium glycyrrhizinate: in vitro percutaneous permeation through human skin and in vivo anti-inflammatory activity on human volunteers. J Control Release 2005; 106: 99-110
  • 20 Godin B, Touitou E. Mechanism of bacitracin permeation enhancement through the skin and cellular membranes from an ethosomal carrier. J Control Release 2004; 94: 365-379
  • 21 Honeywell-Nguyen PL, Bouwstra JA. Vesicles as a tool for transdermal and dermal delivery. Drug Discov Today Technol 2005; 2: 67-74
  • 22 Chen M, Liu X, Fahr A. Skin delivery of ferulic acid from different vesicular systems. J Biomed Nanotechnol 2010; 6: 577-585
  • 23 Qin J, Chen D, Lu W, Xu H, Yan C, Hu H, Chen B, Qiao M, Zhao X. Preparation, characterization, and evaluation of liposomal ferulic acid in vitro and in vivo . Drug Dev Ind Pharm 2008; 34: 602-608
  • 24 Cosco D, Celia C, Cilurzo F, Trapasso E, Paolino D. Colloidal carriers for the enhanced delivery through the skin. Expert Opin Drug Deliv 2008; 5: 737-755
  • 25 Cevc G. Rational design of new product candidates: the next generation of highly deformable bilayer vesicles for noninvasive, targeted therapy. J Control Release 2012; 160: 135-146
  • 26 Paolino D, Celia C, Trapasso E, Cilurzo F, Fresta M. Paclitaxel-loaded ethosomes®: potential treatment of squamous cell carcinoma, a malignant transformation of actinic keratoses. Eur J Pharm Biopharm 2012; 81: 102-112
  • 27 Dubey V, Mishra D, Dutta T, Nahar M, Saraf DK, Jain NK. Dermal and transdermal delivery of an anti-psoriatic agent via ethanolic liposomes. J Control Release 2007; 123: 148-154
  • 28 Celia C, Cilurzo F, Trapasso E, Cosco D, Fresta M, Paolino D. Ethosomes® and transfersomes® containing linoleic acid: physicochemical and technological features of topical drug delivery carriers for the potential treatment of melasma disorders. Biomed Microdevices 2012; 14: 119-130
  • 29 Mouritsen OG. Lipids, curvature, and nano-medicine. Eur J Lipid Sci Technol 2011; 113: 1174-1187
  • 30 Hunter DG, Frisken BJ. Effect of extrusion pressure and lipid properties on the size and polydispersity of lipid vesicles. Biophys J 1998; 74: 2996-3002
  • 31 Hope MJ, Bally MB, Webb G, Cullis PR. Production of large unilamellar vesicles by a rapid extrusion procedure: characterization of size distribution, trapped volume and ability to maintain a membrane potential. Biochim Biophys Acta 1985; 812: 55-65
  • 32 Mayer LD, Hope MJ, Cullis PR. Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim Biophys Acta 1986; 858: 161-168
  • 33 Gompper G, Kroll DM. Driven transport of fluid vesicles through narrow pores. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 1995; 52: 4198-4208
  • 34 Cevc G, Blume G. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochim Biophys Acta 1992; 1104: 226-232
  • 35 Di Marzio L, Esposito S, Rinaldi F, Marianecci C, Carafa M. Polysorbate 20 vesicles as oral delivery system: in vitro characterization. Colloids Surf B Biointerfaces 2013; 104: 200-206
  • 36 Celia C, Trapasso E, Cosco D, Paolino D, Fresta M. Turbiscan lab expert analysis of the stability of ethosomes and ultradeformable liposomes containing a bilayer fluidizing agent. Colloids Surf B Biointerfaces 2009; 72: 155-160
  • 37 Ahmed TA, El-Say KM, Aljaeid BM, Fahmy UA, Abd-Allah FI. Transdermal glimepiride delivery system based on optimized ethosomal nano-vesicles: Preparation, characterization, in vitro, ex vivo and clinical evaluation. Int J Pharm 2016; 500: 245-254
  • 38 Marianecci C, Rinaldi F, Di Marzio L, Pozzi D, Caracciolo G, Manno D, Dini L, Paolino D, Celia C, Carafa M. Interaction of pH-sensitive non-phospholipid liposomes with cellular mimetic membranes. Biomed Microdevices 2013; 15: 299-309
  • 39 Marianecci C, Di Marzio L, Del Favero E, Cantù L, Brocca P, Rondelli V, Rinaldi F, Dini L, Serra A, Decuzzi P, Celia C, Paolino D, Fresta M, Carafa M. Niosomes as drug nanovectors: multiscale pH-dependent structural response. Langmuir 2016; 32: 1241-1249
  • 40 Dubey V, Mishra D, Jain NK. Melatonin loaded ethanolic liposomes: physicochemical characterization and enhanced transdermal delivery. Eur J Pharm Biopharm 2007; 67: 398-405
  • 41 Simões SI, Marques CM, Cruz ME, Cevc G, Martins MB. The effect of cholate on solubilisation and permeability of simple and protein-loaded phosphatidylcholine/sodium cholate mixed aggregates designed to mediate transdermal delivery of macromolecules. Eur J Pharm Biopharm 2004; 58: 509-519
  • 42 Cosco D, Paolino D, Cilurzo F, Casale F, Fresta M. Gemcitabine and tamoxifen-loaded liposomes as multidrug carriers for the treatment of breast cancer diseases. Int J Pharm 2012; 422: 229-237
  • 43 Shazly G, Nawroth T, Langguth T. Comparison of dialysis and dispersion methods for in vitro release determination of drugs from multilamellar liposomes. Dissolut Technol 2008; 15: 7-10
  • 44 Sinico C, Fadda AM. Vesicular carriers for dermal drug delivery. Expert Opin Drug Deliv 2009; 6: 813-825
  • 45 Van den Bergh BA, Wertz PW, Junginger HE, Bouwstra JA. Elasticity of vesicles assessed by electron spin resonance, electron microscopy and extrusion measurements. Int J Pharm 2001; 217: 13-24