
Abstract
!

Issue: The estimation of foetal weight is an inte-
gral part of prenatal care and obstetric routine. In
spite of its known susceptibility to errors in cases
of underweight or overweight babies, important
obstetric decisions depend on it. In the present
contribution we have examined the accuracy and
error distribution of 35 weight estimation formu-
lae within the normal weight range of 2500–
4000 g. The aim of the study was to identify the
weight estimation formulae with the best possi-
ble correspondence to the requirements of clini-
cal routine.
Materials and Methods: 35 clinically established
weight estimation formulae were analysed in
3416 foetuses with weights between 2500 and
4000 g. For this we determined and compared
themean percentage error (MPE), the mean abso-
lute percentage error (MAPE), and the propor-
tions of estimates within the error ranges of 5,
10, 20 and 30%. In addition, separate regression
lineswere calculated for the relationship between
estimated and actual birth weights for the weight
range 2500–4000 g. The formulae were thus ex-
amined for possible inhomogeneities.
Results: The lowest MPE were achieved with the
Hadlock III and V formulae (0.8%, STW 9.2% or, re-
spectively, −0.8%, STW 10.0%). The lowest abso-
lute error (6.6%) as well as the most favourable
frequency distribution in cases below 5% and
10% error (43.9 and 77.5) were seen for the Halas-
ka formula. In graphic representations of the re-
gression lines, 16 formulae revealed a weight
overestimation in the lower weight range and an
underestimation in the upper range. 14 formulae
gave underestimations and merely 5 gave over-
estimations over the entire tested weight range.
Conclusion: The majority of the tested formulae
gave underestimations of the actual birth weight
over the entire weight range or at least in the
upper weight range. This result supports the cur-

Zusammenfassung
!

Fragestellung: Die fetale Gewichtsschätzung ist
integraler Bestandteil der Schwangerenvorsorge
und des geburtshilflichen Alltags. Trotz ihrer bei
unter- und übergewichtigen Kindern bekannten
Fehleranfälligkeit, hängen wichtige geburtshilf-
liche Entscheidungen von ihr ab. In der vorliegen-
den Arbeit wird die Genauigkeit und die Fehler-
verteilung von 35 Gewichtsformeln innerhalb
des normalen Gewichtsbereichs von 2500–4000 g
untersucht. Ziel der Untersuchung war es, Ge-
wichtsformeln zu finden, die den Anforderungen
des klinischen Alltags bestmöglich entsprechen.
Material und Methodik: 35 klinisch etablierte
Gewichtsschätzformeln wurden an 3416 Feten
mit einem Gewicht zwischen 2500 und 4000 g
analysiert. Hierbei wurden der mittlere prozen-
tuale Fehler (MPF), der mittlere absolute prozen-
tuale Fehler (MAPF), der Anteil der Schätzungen
innerhalb eines Fehlerbereichs von 5, 10, 20 und
30% ermittelt und verglichen. Darüber hinaus
wurden für den Zusammenhang von Schätz- zu
tatsächlichem Geburtsgewicht getrennte Regres-
sionsgeraden für den Gewichtsbereich 2500–
4000 g berechnet. Die Formeln wurden somit auf
eine mögliche Inhomogenität überprüft.
Ergebnisse: Der kleinste MPF wurde mittels den
Hadlock-III- und -V-Formeln erzielt (0,8%, STW
9,2% bzw. −0,8%, STW 10,0%). Den geringsten ab-
soluten Fehler (6,6%) sowie die günstigste Häufig-
keitsverteilung bei Fällen unter 5% und 10% Feh-
ler (43,9 und 77,5) wies die Halaska-Formel auf. In
der grafischen Darstellung der Regressionsgera-
den zeigen 16 Formeln eine Gewichtsüberschät-
zung im unteren Gewichtsbereich und eine -un-
terschätzung im oberen Bereich. 14 Formeln un-
terschätzen und lediglich 5 Formeln überschätzen
über den getesteten Gewichtsbereich.
Schlussfolgerung: Die Mehrheit der Formeln un-
terschätzt im vollständigen oder zumindest obe-
ren Gewichtsbereich das tatsächliche Geburts-
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rent strategy of a two-stageweight estimation inwhich a formula
is first chosen after a pre-estimation of the weight range.

gewicht. Die Ergebnisse unterstützen aktuelle Ansätze eines 2-
stufigen Vorgehens der Gewichtsschätzung, bei der die Formel
erst nach Voreinschätzung des Gewichtsbereichs gewählt wird.
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Introduction
!

For almost 4 decades foetal biometrics have been an integral part
of established prenatal care according to maternity policy guide-
lines. Besides bodily integrity, biometry serves to estimate foetal
weight and thus the age-appropriate development. While the
first formulae for weight estimation were based solely on mea-
surement of the biparietal diameter (BPD), the further develop-
ment of numerous formulae based on combinations of biometric
markers then led to an advantage over clinical estimation meth-
ods such as inspection and palpation [1–5].
For the great majority of weight estimation formulae it holds that
they have been developed by means of regression analyses based
on relatively small collectives of average term infants. The mean
percentage error (MPE) as well as the mean absolute percentage
error (MAPE) of the formulae depend on the weight itself. It is
thus not surprising both for underweight infants or, respectively,
pre-term infants as well as for infants with macrosomia, that the
weight estimations can exhibit a clinically relevant error suscep-
tibility [6–8]. However, it is just this delineation of the normal
weight collective from the abnormally under- or overweight fe-
tuses that is of decisive importance for the prenatal and obstetric
management. Interuterine growth retardation as well as macro-
somia carry significant risks for not only neonatal but also for
maternal morbidity and mortality [9–11]. A differentiation from
the normal collective can only be made when at least the weight
estimation can reliably be classified in this range. The spread of
this weight range with 2500 to 4000 g is, however, considered to
be very wide. It is thus of interest as to which weight estimation
formula exhibits not only the lowest but also the most stable er-
rors within this range or, respectively, the largest independence
on the weight range of the infant.
Accordingly, in this study we have examined by means of linear
regressions how and to what extent deviations between the esti-
mated weight and the actual birth weight in the range 2500 to
4000 g vary and which estimation formula exhibits the lowest
constant estimation error in this situation.
Materials and Methods
!

Description of the study collective
For this retrospective study the perinatal database of the Depart-
ment of Obstetrics and Gynecology at the University of Tübingen
was searched for live births with a birth weight between 2500
and 4000 g in the period from 2010 to 2014. Infants with struc-
tural malformations of chromosomal aberrations were excluded
from the analysis.

Conducting the biometric study
In the framework of routine care in our perinatal centre, each
pregnant woman undergoes an untrasound scan close to term.
This examination is mainly intended to confirm the position of
the infant, to estimate the amount of amniotic fluid and to deter-
mine the estimated foetal weight (EFW) on the basis of the usual
biometry-based weight estimation formulae. The biparietal
(BPD) and occipito-frontal diameters (OFD) of the head are mea-
Hoopma
sured at the level of the transventricular plane from the outer
bone margin to the outer bonemargin on the opposite side. Head
circumference (HC) was either determined directly by means of
the ellipse or trace function or calculated from the distances
(HC = 2.325 × [OFD2 + BPD2]1/2) [12]. The foetal abdomen was
measured by means of its transverse and anterior-posterior di-
ameters (ATD, APD) at the level of the stomach and the umbilical
vein-ductus venosus complex. The abdominal circumferencewas
calculated from these values (AC = π × [ATD + APD/2]). The femu-
ral length (FL) is measured as the distance between the diaphy-
ses. The individual measurements, the estimated foetal weight
(EFW) as well as the obstetrically relevant maternal characteris-
tics were stored in the perinatal database. The birth weight (BW)
was determined immediately after delivery by the responsible
midwife, obstetrician or neonatologist and documented. For each
of the included pregnancies the last ultrasound examination pri-
or to delivery in which at least one measurement of each BPD,
OFD, ATD, APD and FL was carried out was documented. Preg-
nancies with incomplete measurements or for which the last
measurement was taken more than 7 days prior to delivery were
excluded from the study. Each pregnancy was included only once
in the study.

Statistical analysis
In each included case the EFW was determined by means of the
published formulae according to Birnholz, Combs, Campbell, Fer-
rero, Hadlock, Halaska, Hansmann, Hart, Higginbottom, Jordaan,
Persson, Merz, Mielke, Ott, Rose and McCallum, Sabbagha, Schild,
Schillinger, Scott, Shepard, Shinozuka, Siemer, Thurnau, Vintzi-
leos, Warsof, Weiner and Woo [3–5,13–38]. The corresponding
formulae are listed inl" Table 1. The accuracies of the various for-
mulaewere determined and compared bymeans of themeanper-
centage error (MPE = [EFW− BW]/BW × 100) and the mean abso-
lute percentage error (MAPE = |(EFW – BW)|/BW ×100). Hereby
the MPE represents the systematic error of the formula. Its stan-
dard deviation (SD) reflects the random elements in the predic-
tion error. The 95% confidence intervals (CI) for theMPEwere cal-
culated andwere used to test for a significant deviation against 0.
For each estimation formula the proportions of the weight esti-
mations with percentage errors of ≤ 5, ≤ 10, ≤ 20 and ≤ 30% were
calculated.
The relationship between the estimated and the actual birth
weights was examined by means of a liner regression analysis.
The extent of the estimation error in dependence on the actual
birth weight could be estimated with the help of the regression.
Results
!

Demographic characteristics
Altogether 3416 pregnancies were included in the study after
consideration of the inclusion criteria. The average age of the
mothers amounted to 31.1 years. The average weight of the
mothers was 76.9 kg (SD ± 14.7 kg, range 31.0–160.2 kg). On aver-
age the gestational age at birth was 39 + 1 weeks (interquartile
range [IQR] 38 + 0–40 + 1 SSW). The gender distribution was bal-
anced. The average weight at birth amounted to 3181 g. In the
nn M et al. Comparison of Errors… Geburtsh Frauenheilk 2016; 76: 1172–1179



Table 1 Survey of the 35 weight estimation formulae.

Author Data Formula

Birnholz [13] BPD, OFD, ATD 3.42928 × (BPD × OFD/1.264)0.5 × AD2/1000 + 41.218 [g, mm]

Combs [14] HC, AC, FL 0.23718 × AC2 × FL + 0.03312 × HC3 [g, cm]

Campbell [15] AC e(− 4.564 + 0.282 × AC − 0.00331 × AC2) [kg, cm]

Ferrero [16] AC, FL 10(0.77125 + 0.13244 × AC − 0.12996 × FL − 1.73588 × AC2/1000 + 2.18984 × FL/AC) [g, cm]

Hadlock I [4] BPD, HC, AC, FL 10(1.3596 + 0.0064 × HC + 0.0424 × AC + 0.174 × FL + 0.00061 × BPD × AC − 0.00386 × AC × FL) [g, cm]

Hadlock II [4] AC, FL 10(1.304 + 0.05281 × AC + 0.1938 × FL − 0.004 × AC × FL) [g, cm]

Hadlock III [4] BPD, AC, FL 10(1.335–0.0034 × AC × FL + 0.0316 × BPD + 0.0457 × AC + 0.1623 × FL) [g, cm]

Hadlock IV [4] HC, AC, FL 10(1.326–0.00326 × AC × FL + 0.0107 × HC + 0.0438 × AC + 0.158 × FL) [g, cm]

Hadlock V [5] BPD, AC 10(1.1134 + 0.05845 × AC − 0.000604 × AC2 − 0.007365 × BPD2 + 0.000595 × BPD × AC + 0.1694 × BPD) [g, cm]

Hadlock VI [5] HC, AC, FL 10(1.5662–0.0108 × HC + 0.0468 × AC + 0.171 × FL + 0.00034 × HC2 − 0.0003685 × AC × FL) [g, cm]

Halaska [17] BPD, AC, FL 10(0.64041 × BPD − 0.03257 × BPD2 + 0.00154 × AC × FL) [g,cm]

Hansmann [18] BPD, AD, GA, − 0.001665958 × AD3 + 0.4133629 × AD2 − 0.5580294 × AD − 0.01231535 × BPD3 + 3.702 × BPD2 − 330.1811 × BPD
− 0.4937199 × (GA + 1)3 + 55.958061 × (GA + 1)2 − 2034.3901 × (GA + 1) + 32768.19 [g, mm]

Higginbottom [20] AC 0.0816 × AC3 [g, cm]

Jordaan [21] BPD, HC, AC 10(2.3231 + 0.02904 × AC + 0.0079 × HC − 0.0058 × BPD) [kg, cm]

Merz I [22] BPD, AC − 3200.40479 + 157.07186 × AC + 15.90391 × BPD × BPD [g, cm]

Merz II [22] AC 0.1 × AC3 [g, cm]

Ott [26] HC, AC, FL 10(− 2.0661 + 0.04355 × HC + 0.05394 × AC − 0.0008582 × HC × AC + 1.2594 × FL/AC) [kg, cm]

Rose-McCallum
[27]

BPD, AD, FL e(0.143 × [BPD + AD + FL] + 4.198) [g, cm]

Sabbagha [28] GA, HC, AC, FL − 55.3–16.35 × (GA + HC + 2 × AC + FL) + 0.25838 × (GA + HC + 2 × AC + FL)2 [g, cm]

Schild I [29] female
BPD, AC, FL

− 4035.275 + 1.143 × BPD3 + 1159.878 × AC0.5 + 10.079 × FL3 − 81.277 × FL2 [g, cm]

Schild I [29] male
BPD, HC, AC, FL

1913.853 × log10(BPD) + 0.01323 × HC3 + 55.532 × AC2 − 13602.664 × AC0.5 − 0.721 × AC3 + 2.31 × FL3 [g, cm]

Schillinger [30] BPD, ATD 397.7 × BPD + ATD − 4387 [g, cm]

Shepard [32] BPD, AC 10(− 1.7492 + 0.166 × BPD + 0.046 × AC − 0.002546 × AC × BPD) [kg,cm]

Shinozouka [33] BPD, AC, FL 1.07 × BPD3 + 3.42 × ATD2 × FL [g, cm]

Warsof [3] BPD, AC 10(− 1.599 + 0.144 × BPD + 0.032 × AC − 0.000111 × BPD2 × AC) [kg, cm]

Woo [38] BPD, AC, FL 10(1,13705 + 0,15549 × BPD + 0.0464 × AC − 0.00279682 × BPD × AC + 0.037769 × FL − 0.000494529 × AC × FL) [g, cm]

Vinzeleos [36] BPD, AC 10(1.879 + 0.084 × BPD + 0.026 × AC) [g, cm]

Persson [23] BPD, AD, FL BPD0.972 × ([AD1 + AD2]/2)1.743 × FL0.367 × 10(− 2.646) [g, cm]

Schild II [39] HC, AC, FL 5381.193 + 150.324 × HC + 2.069 × FL3 + 0.0232 × AC3 − 6235.478 × LOG(HC) [g, cm]

Scott [31] HC, AC, FL 10(0.66 × LOG(HC) + 1.04 × LOG(AC) + 0.985 × LOG(FL)) [g, cm]

Siemer [34] BPD, AC, FL − 5948.336 + 2101.261 × LN(AC) + 15.613 × FL2 + 0.0577 × BPD3 [g, cm]

Thurnau [35] BPD, AC (9–337 × BPD × AC) − 229 [g, cm]

Weiner I [37] HC, AC, FL 10(1.6961 + 0.02253 × HC + 0.01645 × AC + 0.06439 × FL) [g, cm]

Weiner II [37] HC, AC 10(1.6575 + 0.04035 × HC + 0.01285 × AC) [g, cm]

Mielke I [24] BPD, ATD, FL e(3.067510 + 0.01677 × BPD + 0.000412 × ATD2 + 0.040611 × FL − 0.000000006027957 × BPD2 × ATD2 − 0.000005086 × ATD2 × FL) [g, cm]

Mielke II [25] BPD, ATD, FL e(3.704706 + 0.033276 × BPD + 0.000093048 × ATD2 + 0.010570 × FL − 0.00000002477864 × BPD2 × ATD2 + 0.000002009 × ATD2 × FL) [g,cm]

AC = abdominal circumference, HC = head circumference, FL = femur length, BPD = biparietal diameter, AD = abdominal diameter, GA = gestational age, MW = maternal weight
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majority of the cases the ultrasound examination was performed
at a maximum of 1 day before delivery (56.6%). 34.3% of the ex-
aminations weremade 2–5 days before delivery and 9.1% on days
6 or 7 prior to birth.

Mean percentage error and
mean absolute percentage error
The MPE and MAPE values for the 35 employed formulae are
listed in l" Table 2. The largest overestimation was seen for the
Birnholz formula with an MPE of − 12.2% while the clearest
underestimation was found with the Mielke I formula
(MPF = 46.0%). It should be emphasised that the lowest percent-
age errors were found for the Hadlock III formula (0.8%) and the
Hadlock V formula (− 0.8%). In a comparison of all formulae the
standard deviations varied between 6.4% (Schild II) and 16.4%
(Hadlock IV).
20 formulae (Halaska, Schild I, Shinozuka, Sabbagha, Hadlock III,
Hadlock I, Ott, Hadlock V, Combs, Hadlock II, Merz I, Rose-McCal-
lum, Shepard, Warsof, Ferrero, Hadlock VI, Campbell, Persson,
Hoopmann M et al. Comparison of Errors… Geburtsh Frauenheilk 2016; 76: 1172–
Hansmann, Jordaan) exhibited MAPE values of ≤ 10%. Of special
interest is the Halaska formula that showed the best value of
6.6%. Six formulae gave MAPE values in the intermediate error
range of 10.1 to ≤ 15% and further 9 formulae had MAPE values
in the critical region of ≥ 15.1%.
l" Table 3 presents the frequency distribution of differences be-
tween actual birth weight and estimated birth weight for the in-
divdual formulae in the weight range of 2500–4000 g. The fa-
vourable performance of the Halaska formula is again confirmed
here. With use of the Halaska formula for birth weight estima-
tion, 43.85% of the cases lie below the 5% and 77.52% below the
10% error level. Altogether there were 22 formulae for which
more than half of the estimated values showed a deviation of
≤ 10%. For four formulae (Weiner II, Schild II, Mielke II and Mielke
I), on the other hand, estimations of more than half of the cases
gave rise to clinical questionable deviations of more than 20%.
1179



Table 2 MPE and MAPE values including standard deviations for all 35 formulae in the birth weight range from 2500–4000 g.

MPE (%) MAPE (%)

Mean value SD Confidence interval Mean value SD

Lower limit Upper limit

Halaska 0.9 8.1 0.6 1.2 6.6 4.8

Schild I 1.9 8.2 1.6 2.2 6.8 5.0

Shinozuka − 1.5 8.9 − 1.8 − 1.2 7.2 5.4

Sabbagha 2.8 8.6 2.5 3.1 7.3 5.4

Hadlock III 0.8 9.2 0.5 1.1 7.4 5.5

Hadlock I 2.5 8.9 2.2 2.8 7.5 5.5

Ott 3.9 8.5 3.6 4.2 7.5 5.5

Hadlock V − 0.8 10.0 − 1.1 − 0.5 8.0 6.1

Combs 5.6 8.1 5.3 5.9 8.1 5.7

Hadlock II 3.6 9.6 3.3 3.9 8.3 6.1

Merz I − 5.0 9.3 − 5.3 − 4.7 8.4 6.5

Rose-McCallum − 1.9 10.5 − 2.2 − 1.6 8.5 6.5

Shepard − 1.9 10.6 − 2.2 − 1.6 8.5 6.6

Warsof 3.2 10.1 2.9 3.5 8.5 6.3

Ferrero − 3.5 10.3 − 3.8 − 3.2 8.6 6.6

Hadlock VI 6.2 8.7 5.9 6.5 8.7 6.2

Campbell 5.0 9.9 4.7 5.5 8.9 6.7

Persson 6.4 9.0 6.1 6.7 9.0 6.4

Hansmann − 7.3 9.1 − 7.6 − 7.0 9.3 7.1

Jordaan 5.0 10.6 4.7 5.3 9.5 6.9

Schillinger − 9.6 9.3 − 9.9 − 9.3 10.9 7.8

Vinzeleos − 7.0 12.9 − 7.4 − 6.6 11.5 9.1

Higginbottom 9.2 13.1 8.8 9.6 13.1 9.2

Hadlock IV 3.4 16.4 2.9 3.9 13.3 10.0

Weiner I 12.9 8.9 12.6 13.2 13.6 7.7

Birnholz − 12.2 11.7 − 12.6 − 11.8 13.9 9.8

Merz II − 11.3 16.1 − 11.8 − 10.8 15.4 12.2

Siemer 16.7 6.6 16.5 16.9 16.8 6.4

Thurnau 17.0 7.0 6.8 7.2 17.1 6.8

Scott 17.6 6.8 17.4 17.8 17.6 6.7

Woo 17.9 7.3 17.7 18.1 18.0 7.1

Weiner II 19.7 9.9 19.4 20.0 20.1 9.1

Schild II 23.0 6.4 22.8 23.2 23.0 6.3

Mielke II 25.8 10.7 25.5 26.1 25.9 10.5

Mielke I 46.0 8.1 45.7 46.3 46.0 8.1
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Regression analysis between estimation error
and actual birth weight
The determination of regression lines was able to demonstrate by
means of graphic plots the variance of the deviations between es-
timated and actual birth weights over the entire weight range.
l" Fig. 1 shows the 16 formulae that exhibited an intersection
with the ideal regression line (x [actual birth weight] = y [esti-
mated birth weight]). A common feature of all formulae is that
they move up from a region of weight overestimation in the low-
er range to a region of underestimation.
l" Fig. 2 shows the distribution of 5 formulae that always resulted
in overestimations of the birth weight. Estimations according to
the Rose-McCullum formula were nearest and almost parallel to
the ideal line. l" Fig. 3, on the other hand, illustrates the distribu-
tion of the 14 formulae that always led to an underestimation of
the birth weight. Markedly different courses can be clearly seen
here. Whereas in the lower weight range the formula according
to Jordaan is closest to the ideal this is true for the Schild II formu-
la in the upper weight range.
Hoopma
Discussion
!

In the present study we have, on the basis of measurements of
3416 foetuses, shown that the smallest MPEs can be obtained
with the Hadlock III and V formulae (0.8%, SD 9.2% or, respective-
ly, − 0.8%, SD 10.0%). The lowest absolute error (6.6%) as well as
the most favourable frequency distribution for cases with lower
than 5% and 10% errors (43.9 and 77.5) were seen for the Halaska
formula. This corresponds to the expected values from compara-
ble preliminary work. The majority of the weight estimation for-
mulae were developed for average infants weighing between
2500–4000 g and exhibited thereby a relatively low absolute per-
centage error of between 6–10%, just as in our series [40–42].
Merely 5 formulae consistently showed overestimations of
weight. 14 formulae underestimated the foetal weight over the
entire weight range, 16 did so in the upper weight region.
There are numerous possibilities to improve the weight estima-
tions. With regard to the accuracy of sonographic measurements,
several studies have shown that practical sonographic experi-
ence or, respectively, targeted training on patients or simulators
can reduce the errors [41,43]. Also a time window between mea-
surements and delivery of ≤ 7 days can help to reduce errors [44].
Another option, especially for heavier infants, is an optimisation
nn M et al. Comparison of Errors… Geburtsh Frauenheilk 2016; 76: 1172–1179



Table 3 Frequency distribution between estimated and actual birth weights in the birth weight range of 2500–4000 g.

Formula Difference between actual and estimated birth weight less than:

5 percent 10 percent 20 percent 30 percent

Halaska 43.85% 77.52% 98.77% 100.00%

Schild I 43.62% 76.38% 98.27% 99.97%

Shinozuka 41.98% 73.07% 97.51% 99.77%

Sabbagha 41.31% 71.72% 97.98% 99.88%

Hadlock III 40.28% 71.49% 97.19% 99.82%

Hadlock I 40.60% 71.46% 97.34% 99.94%

Ott 39.99% 70.32% 97.28% 99.91%

Hadlock V 37.76% 68.68% 95.52% 99.56%

Combs 36.15% 67.10% 96.34% 99.94%

Hadlock II 36.48% 65.49% 95.64% 99.74%

Merz I 37.88% 66.04% 94.06% 99.39%

Rose-McCallum 35.63% 65.52% 93.97% 99.44%

Shepard 35.98% 65.66% 93.91% 99.06%

Ferrero 35.51% 64.17% 93.53% 99.36%

Hadlock VI 32.96% 62.76% 94.67% 99.80%

Campbell 34.75% 62.09% 93.03% 99.33%

Persson 32.90% 60.69% 93.62% 99.82%

Hansmann 34.02% 61.62% 91.36% 98.59%

Jordaan 32.11% 58.96% 90.95% 99.33%

Schillinger 27.20% 52.78% 86.74% 97.80%

Vinzeleos 28.37% 52.69% 83.55% 95.70%

Higginbottom 22.72% 43.41% 76.49% 95.49%

Hadlock IV 21.98% 44.15% 76.87% 93.88%

Weiner I 15.13% 35.51% 78.60% 98.19%

Birnholz 21.02% 40.63% 75.09% 92.83%

Merz II 21.75% 40.31% 69.85% 88.00%

Siemer 4.42% 16.10% 66.63% 99.24%

Thurnau 4.33% 15.37% 65.13% 97.95%

Woo 3.60% 13.55% 59.69% 95.84%

Weiner II 5.56% 14.72% 48.71% 86.24%

Schild II 0.50% 2.49% 30.85% 86.56%

Mielke II 2.72% 7.52% 28.69% 64.08%

Mielke I 0.00% 0.00% 0.09% 3.28%
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of the weight estimation through a combination of ultrasound
findings with maternal and pregnancy-specific parameters such
as gestational age, parity, gender of the foetus, and maternal
height or weight. The presumed benefit of such an elaborate pro-
cedure is, however, a subject of controversial discussion in the
current literature [45–47]. Nevertheless, there is consensus that
maternal obesity increases the estimation errors [48,49].
Ultimately, the estimation errors of sonographic formulae must
be considered as being intrinsic to the method. In a study of 628
new-born infants, Kehl et al. could reduce the systematic error to
a minimum by means of postnatally performed measurements.
Even so, the MPEs of the employed formulae were between 7.42
and 8.77%. The proportion of estimations with an error of under
10% amounted to between 74.6 and 81.3%. Under consideration
of the 95% limits of agreement, the estimations were in a range of
± 500 g. These key data for optimal weight estimations are in
agreement with our results when using the best formulae such
as those according to Halaska or Hadlock.
Our data show that many formulae exhibit a variable susceptibil-
ity to error within the normal weight range. This observation
supports the attempts of current research groups to use a two-
step procedure for weight estimations. In a first such step the
weight range, for example, is delineated by measurement of the
AC and the formula chosen in dependence on this result. It has
been demonstrated that those formulae that had been specifi-
Hoopmann M et al. Comparison of Errors… Geburtsh Frauenheilk 2016; 76: 1172–
cally developed for foetuses with an abdominal circumference of
less than 290mm exhibited a significantly better MAPE (7.13–
7.61%) and markedly more measurements with an error of less
than 10% in comparison with the Warsof and Hadlock formulae
[50]. An analogous result has been determined for infants with
an AC greater than 360mm [51]. The so-called Zürich method
follows a similar strategy. In this case, the product of the AC and
the FL is calculated. When this value is < 24600 the Hadlock for-
mula is used, for larger values the Merz formula [52]. Our data
confirm that in the upper weight range the Merz formula enables
a better weight estimation than the Hadlock formula.
A further strategy for improvement involves the implementation
of 3Dmeasurements, as a rule in the standardised determination
of a volume from the foetal thigh region. At least in cases of man-
ifest gestational diabetes, an improvement in weight estimation
through 3Dmeasurements seems to be possible because just in
such pregnancies the soft tissue mantle does especially influence
the weight of the foetus [53].
On a critical note, it must be realised that the validity of the
present data is limited due to the retrospective nature of the
study. The monocentric data acquisition represents a further lim-
itation. However, this is relativised somewhat by the large num-
ber of participating investigators with varying degrees of training
and experience.
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Fig. 1 Actual and estimated birth weights. The listed regression formulae have an intersection with the ideal regression formula y = x for birth weights
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Conclusions
!

When judged by theMPE andMAPE results, the formulae accord-
ing to Hadlock and Halaska exhibit the lowest errors. Most of the
formulae tend to underestimate the weight to varying degress
depending on the weight class. This supports current efforts to
apply a two-step procedure.
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