Limonene Enhances the cAMP Response Element (CRE)-Dependent Transcriptional Activity Activated via Adenosine A2A Receptor in a Neural-Crest Derived Cell Line, PC-12

Jiro Takito1,2*, Masaki Ota3, Chisato Oba3, Hironori Fujiwara1, Kiyouhi Murata4, Kikuji Yamaguchi1,5*, Nobuyuki Uozumi6, Masanori Nakamura2, Hiroshi Inomata1, Yasushi Ohizumi1,7,8*

1 Department of Anti-Dementia Functional Food Development, Graduate School of Engineering, Tohoku University, Aoba, Aramaki, Sendai, Japan
2 Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, Hatanodai, Shinagawa, Tokyo, Japan
3 Research Center of Supercritical Fluid Technology, Tohoku University, Aoba-ku, Aramaki, Sendai, Japan
4 Japan Royal Jelly (RJ) Co. Ltd., R&D Center, Ganbara, Kami-machi, Kami-gun, Miyagi, Japan
5 Japan Royal Jelly (RJ) Co. Ltd., Kyobashi, Chuo-ku, Tokyo, Japan
6 Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aoba, Aramaki, Sendai, Japan
7 Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
8 Kansei Fukushi Research Center, Tohoku Fukushi University, Kunimi, Aoba-ku, Sendai, Japan

Abstract

Prevention and treatment of Alzheimer’s disease are urgent problems for elderly people in developed countries. To seek useful compounds that treat, delay the onset, or prevent the development of Alzheimer’s disease, we screened natural resources using the cyclic AMP response element-dependent transcription in the PC12 cell line. We previously found that honey bee royal jelly stimulates the cyclic AMP response element-dependent transcription activity in PC12 cells. Here, we report that R-limonene, a monoterpenic, enhanced the royal jelly-induced cyclic AMP response element-dependent transcription activity, whereas R-limonene showed no effect in absence of royal jelly. The enhancement was inhibited by ZM241385, an antagonist for adenosine A2A receptor. R-limonene also enhanced the cyclic AMP response element-dependent transcription activity induced by adenosine and AMP. Thus, R-limonene represents a novel type of modulator that enhances the CRE-dependent transcription via adenosine A2A receptor pathway.

Key words

adenosine receptor · CRE-dependent transcription · limonene · memory · royal jelly

Abbreviations

AD: Alzheimer’s disease
cAMP: cyclic AMP
CRE: cAMP response element

These authors contributed equally to this work.

LTP: long-term potentiation
RJ: royal jelly

Supporting information available online at http://www.thieme-connect.de/products

Neurodegenerative disorders, including AD, have a devastating impact on both patients and society [1]. Due to this expanding threat to our society, disease management and therapy are urgently needed. The biological basis of learning and the memory depends on the establishment of LTP in the hippocampus [2]. Biochemically, LTP is formed by activation of cAMP-dependent signaling and subsequent transcription of the target genes of the CRE-binding protein. Our screening of natural resources lead to the finding that nobiletin, a citrus flavonoid, activates the CRE-dependent transcription in PC12D cells, a rat pheochromocytoma cell line [3]. Our next studies proved that nobiletin improves the memory deterioration in beta-amyloid infused AD model rats [4], bulbectomy-induced cholinergic neurodegenerative mice [5], a transgenic mouse model of AD [6], and Parkinson disease model mice [7]. Using the same strategy, we found that honeybee RJ stimulates the CRE-dependent transcription in PC12D cells [8]. RJ contains AMP and AMP-N1-oxide that induces the neurite outgrowth via adenosine A2A receptor [9]. Adenosine A2A receptor is a G-protein coupled receptor that distributes in the central nervous system [10]. The role of adenosine A2A receptor in the formation of LTP is puzzling [11]. Although an agonist of the receptor increased LTP in the rat hippocampus [12], mice deficient in the receptor exhibited the improved spatial recognition [13]. Thus, modulators of the receptor are potential pharmacological tools to treat AD, although there is a controversy over the function of adenosine A2A receptor in the brain activity. To find a substance that potentiates the antiamnesia activity of RJ, we screened extracts derived from herbal plants. Preliminary screening identified limonene as a candidate for the activator of the RJ-induced stimulation of CRE-dependent transcription in PC12 cells. To confirm this finding, we tested commercially available limonenes for the CRE-dependent transcription induced by RJ in PC12 cells. As shown in Fig. 1A, R-limonene dose-dependently enhanced the CRE-dependent transcription activity induced by 10 µg/mL RJ. Interestingly, R-limonene had no effect on the CRE-dependent transcription activity in the absence of RJ. R-limonene was effective on both low and high concentrations of RJ (Fig. 1B).

We next examined the effect of R-limonene on RJ along the time-course of its stimulation of CRE-dependent transcription (Fig. 2). RJ at 10 µg/mL significantly increased the CRE-dependent transcription activity 1–5 h after administration. The activating effect of RJ diminished at 24 and 48 h after administration. The addition of 100 µM R-limonene to RJ significantly enhanced the CRE-dependent transcription activity induced by RJ from 1 to 24 h. Again, R-limonene alone had no effect on the CRE-dependent transcription activity at all time points examined.

We next tested the effect of several analogues of R-limonene on the CRE-dependent transcription induced by RJ (Fig. 3). (S)-(−)-limonene and (4R)-limonene oxide enhanced the RJ-induced CRE-dependent transcription comparable to the level of R-limonene. (4S)-limonene oxide significantly increased the CRE-dependent transcription induced by RJ, but the potency of the limonene oxide was weaker than that of R-limonene. Interestingly, all these limonene analogues had no effect on the CRE-dependent...
transcription in absence of RJ. These results suggest the propenyl moiety that attaches to the cyclohexene or cyclohexane might be important for the activating effect of limonenes.

Next, we examined the effect of the adenosine receptor A2A antagonist ZM241385 on the RJ-induced stimulation of CRE-dependent transcription. The antagonist dose-dependently suppressed the CRE-dependent transcription induced by RJ ([Fig. 4](#fig4)). The luciferase activity was relative to the control value. The assay was performed in quadruplicate. **Significantly different from the value without ZM241385, p < 0.05.**

The CRE-dependent transcription induced by RJ ([Fig. 4](#fig4)). The luciferase activity was relative to the control value. The assay was performed in quadruplicate. **Significantly different from the value without ZM241385, p < 0.05.**

The CRE-dependent transcription induced by RJ ([Fig. 4](#fig4)). The luciferase activity was relative to the control value. The assay was performed in quadruplicate. **Significantly different from the value without ZM241385, p < 0.05.**

The CRE-dependent transcription induced by RJ ([Fig. 4](#fig4)). The luciferase activity was relative to the control value. The assay was performed in quadruplicate. **Significantly different from the value without ZM241385, p < 0.05.**

The CRE-dependent transcription induced by RJ ([Fig. 4](#fig4)). The luciferase activity was relative to the control value. The assay was performed in quadruplicate. **Significantly different from the value without ZM241385, p < 0.05.**

The CRE-dependent transcription induced by RJ ([Fig. 4](#fig4)). The luciferase activity was relative to the control value. The assay was performed in quadruplicate. **Significantly different from the value without ZM241385, p < 0.05.**

The CRE-dependent transcription induced by RJ ([Fig. 4](#fig4)). The luciferase activity was relative to the control value. The assay was performed in quadruplicate. **Significantly different from the value without ZM241385, p < 0.05.**

The CRE-dependent transcription induced by RJ ([Fig. 4](#fig4)). The luciferase activity was relative to the control value. The assay was performed in quadruplicate. **Significantly different from the value without ZM241385, p < 0.05.**
ing Information). (4S)-Limonene oxide slightly increased the CRE-dependent transcription induced by adenosine, but the increase was insignificant. These results confirmed the effect of limonenes on RJ and that limonene acts on the signaling pathway that includes adenosine receptor A2A.

We have shown here that limonene enhanced the CRE-dependent transcription induced by RJ and adenosine via adenosine receptor A2A in PC12 cells. RJ has been known to induce the neurite outgrowth mediated by the adenosine receptor in PC12 cells [9]. Both the neurite outgrowth and the CRE-dependent transcription induced by RJ appear to share the similar signal transduction pathways. In this regard, it is interesting that limonene competitively decreased the binding of \(^{3}H\)CGS 21680, an A2A receptor agonist, to a rat brain cerebral cortex membrane, suggesting that limonene is a direct ligand for A2A receptor [14]. But limonene alone failed to stimulate the CRE-dependent transcription in PC12 cells (\(\text{Fig. 1A, 2 and 3}\)), whereas AMP and adenosine activated the CRE-dependent transcription (\(\text{Fig. 1S, Supporting Information}\)). Thus, the interaction of limonene with the adenosine receptor may be different from that of the authentic ligands. Limonene may act on the adenosine A2A receptor in an allosteric manner.

That limonene itself has no activity to induce the CRE-dependent transcription, while it augments the activity of ligands of adenosine A2A receptor, makes limonene a unique compound. A comparison of the activities of limonene analogues revealed that the propenyl moiety that attaches to the cyclohexene or cyclohexane might be important in modulating the activity of ligands of the adenosine A2A receptor (\(\text{Fig. 3}\)). The structure will become a lead compound to develop a novel type of agonists with higher activity than limonene.

Materials and Methods

Materials

Native RJ was obtained by the Yamaguchi’s organic bee culture method [15]. The RJ used in this study was prepared from frozen powder of native RJ as described [8]. R-limonene was purchased from Nacalai Tesque. \((S)-(-)-\text{Limonene, (4R)-Limonene oxide (mixture of cis and trans), (4S)-Limonene oxide (mixture of cis and trans), adenosine 5'-monophosphate, adenosine, and ZM 241 385 (purity > 98%) were obtained from Sigma-Aldrich. PC12 cells were obtained from the Riken BioResource Center.}

Measurements of CRE-dependent transcriptional activity in PC12 cells

To measure the CRE-dependent transcriptional activity in PC12 cells, we adopted the reporter gene assay as described previously [8]. Details are provided in the Supporting Information. The concentration of limonene and its analogues used in the present study (100 \(\mu\text{M}\)) had little effect on the morphology of PC 12 cells.

Statistical analysis

Data are expressed as the means \(\pm\) SD. Comparison between the groups were performed using paired Student’s t-test using Microsoft Excel.

Supporting information

Details on the measurement of the CRE-dependent transcriptional activity in PC12 cells and on the effects of adenosine and AMP on the CRE-dependent transcription in PC12 cells, and of limonene on the CRE-dependent transcription induced by adenosine are available as Supporting Information.

Acknowledgements

We thank Ms. Michi Kawada for her excellent technical assistance.

Conflict of Interest

The authors declare no conflict of interest.

References
