Anästhesiol Intensivmed Notfallmed Schmerzther 2017; 52(07/08): 498-511
DOI: 10.1055/s-0042-118830
Topthema
Georg Thieme Verlag KG Stuttgart · New York

Einfluss der Kardioanästhesie auf das Patientenoutcome

Impact of Cardiac Anaesthesia on Patient Outcome
Martina Nowak-Machen
Further Information

Publication History

Publication Date:
25 July 2017 (online)

Zusammenfasssung

Die Kardioanästhesie ist ein hoch technisierter, subspezialisierter Bereich der Anästhesiologie. Die Verbesserung des Patientenoutcomes wurde untersucht für hämodynamisches Management durch zielgerichtete Therapie, Nierenprotektion durch ischämische Fernpräkonditionierung, Myokardprotektion durch pharmakologische Präkonditionierung mittels volatiler Anästhetika, Neuroprotektion durch Nahinfrarotspektrometrie und perioperative Echokardiografie.

Die Kardioanästhesie ist ein hoch technisierter, subspezialisierter Bereich der Anästhesiologie. Die Verbesserung des Patientenoutcomes wurde untersucht für hämodynamisches Management durch zielgerichtete Therapie, Nierenprotektion durch ischämische Fernpräkonditionierung, Myokardprotektion durch pharmakologische Präkonditionierung mittels volatiler Anästhetika, Neuroprotektion durch Nahinfrarotspektrometrie und perioperative Echokardiografie.

Abstract

The perioperative management of complex patients in a highly technical and subspecialized environment is the domain of the cardiac anesthesiologist. Evidence suggests that hemodynamic management using goal directed hemodynamic therapy (GDHT) improves patient outcome. Organ protection remains a main concern during cardiac surgery using extracorporeal circulation. Mortality can be decreased when remote ischemic preconditioning techniques (RIPC) are being used. Neurological outcomes can be improved with near-infrared-spectometry (NIRS), volatile anesthetics increase myocardial protection through preconditioning and perioperative echocardiography increases overall patient survival.

Kernaussagen
  • Die perioperative 30-Tages-Mortalität wird als häufigster Parameter zur Quantifizierung des Patientenoutcomes in der Herzchirurgie herangezogen.

  • Die perioperative transthorakale (TTE), transösophageale (TEE) und epikardiale (EU) Echokardiografie liefert wichtige Informationen bezüglich der kardialen Funktion, des operativen Ergebnisses und der Kalzifikation der großen arteriellen Gefäße und kann so das chirurgische Vorgehen und das Patientenoutcome beeinflussen.

  • Die zielorientierte hämodynamische Therapie („goal-directed hemodynamic therapy“) verbessert die Gewebeoxygenierung und kann das Auftreten von Komplikationen verringern.

  • Der Volumenersatz bei herzchirurgischen Patienten bleibt weiterhin kontrovers. Bei nicht septischen Patienten kann jedoch unter Abwägung der individuellen Vor- und Nachteile sowohl der Einsatz von kristalloiden als auch von neueren kolloiden Lösungen vertreten werden.

  • Das neurologische Outcome kann durch den Einsatz der epiaortalen Echokardiografie verbessert werden.

  • Das neurokognitive Outcome kann durch den Einsatz der Nahinfrarotspektrometrie (NIRS) verbessert und die Krankenhausverweildauer verkürzt werden.

  • Zur pharmakologischen Präkonditionierung und Myokardprotektion sollte eine balancierte Narkoseführung mit inhalativem Sevofluran der TIVA mit Propofol vorgezogen werden.

  • Das perioperative Nierenversagen erhöht die Gesamtmortalität und sollte unbedingt vermieden werden.

  • Die ischämische Fernpräkonditionierung beruht auf dem Prinzip kurzer Ischämie- und Reperfusionsphasen z. B. an den Extremitäten und kann die Rate des akuten Nierenversagens sowie der Krankenhausverweildauer senken.

 
  • Literatur

  • 1 Meersch M, Zarbock A. Prevention of cardiac surgery-associated acute kidney injury. Curr Opin Anaesthesiol 2017; 30: 76-83
  • 2 Siregar S, Groenwold RH, de Mol BA. et al. Evaluation of cardiac surgery mortality rates: 30-day mortality or longer follow-up?. Eur J Cardiothorac Surg 2013; 44: 875-883
  • 3 Cooley DA, Frazier OH. The past 50 years of cardiovascular surgery. Circulation 2000; 102 (20 Suppl. 4): IV87-IV93
  • 4 Slogoff S, Keats AS. Does perioperative myocardial ischemia lead to postoperative myocardial infarction?. Anesthesiology 1985; 62: 107-114
  • 5 Likosky DS, Nugent WC, Clough RA. et al. Comparison of three measurements of cardiac surgery mortality for the Northern New England Cardiovascular Disease Study Group. Ann Thorac Surg 2006; 81: 1393-1395
  • 6 Ferguson jr. TB, Dziuban jr. SW, Edwards FH. et al. The STS National Database: current changes and challenges for the new millennium. Committee to establish a national database in cardiothoracic surgery, the Society of Thoracic Surgeons. Ann Thorac Surg 2000; 69: 680-691
  • 7 Rajashekara S, Subramaniam B. Transesophageal echocardiography: rapid expansion in perioperative medicine in emerging economies – are we ready for a safe and effective practice?. Ann Card Anaesth 2011; 14: 171-173
  • 8 Oka Y. The evolution of intraoperative transesophageal echocardiography. Mt Sinai J Med 2002; 69: 18-20
  • 9 Frazin L, Talano JV, Stephanides L. et al. Esophageal echocardiography. Circulation 1976; 54: 102-108
  • 10 Singh S, Goyal A. The origin of echocardiography: a tribute to Inge Edler. Tex Heart Inst J 2007; 34: 431-438
  • 11 Matsumoto M, Oka Y, Strom J. et al. Application of transesophageal echocardiography to continuous intraoperative monitoring of left ventricular performance. Am J Cardiol 1980; 46: 95-105
  • 12 American Society of Anesthesiologists, Society of Cardiovascular Anesthesiologists Task Force on Transesophageal Echocardiography. Practice guidelines for perioperative transesophageal echocardiography. An updated report by the American Society of Anesthesiologists and the Society of Cardiovascular Anesthesiologists Task Force on Transesophageal Echocardiography. Anesthesiology 2010; 112: 1084-1096
  • 13 Eltzschig HK, Rosenberger P, Loffler M. et al. Impact of intraoperative transesophageal echocardiography on surgical decisions in 12,566 patients undergoing cardiac surgery. Ann Thorac Surg 2008; 85: 845-852
  • 14 Edrich T, Shernan SK, Smith B. et al. Usefulness of intraoperative epiaortic echocardiography to resolve discrepancy between transthoracic and transesophageal measurements of aortic valve gradient – a case report. Can J Anaesth 2003; 50: 293-296
  • 15 Hilberath JN, Oakes DA, Shernan SK. et al. Safety of transesophageal echocardiography. J Am Soc Echocardiogr 2010; 23: 1115-1127
  • 16 Mahmood F, Shernan SK. Perioperative transoesophageal echocardiography: current status and future directions. Heart 2016; 102: 1159-1167
  • 17 Click RL, Abel MD, Schaff HV. Intraoperative transesophageal echocardiography: 5-year prospective review of impact on surgical management. Mayo Clin Proc 2000; 75: 241-247
  • 18 Nowak-Machen M, Schmid E, Schlensak C. et al. Safety of transesophageal echocardiography during extracorporeal life support. Perfusion 2016; 31: 634-639 doi:10.1177/0267659116647472
  • 19 Memtsoudis SG, Rosenberger P, Loffler M. et al. The usefulness of transesophageal echocardiography during intraoperative cardiac arrest in noncardiac surgery. Anesth Analg 2006; 102: 1653-1657
  • 20 Rosenberger P, Shernan SK, Loffler M. et al. The influence of epiaortic ultrasonography on intraoperative surgical management in 6051 cardiac surgical patients. Ann Thorac Surg 2008; 85: 548-553
  • 21 Osawa EA, Rhodes A, Landoni G. et al. Effect of perioperative goal-directed hemodynamic resuscitation therapy on outcomes following cardiac surgery: A randomized clinical trial and systematic review. Crit Care Med 2016; 44: 724-733
  • 22 Polonen P, Ruokonen E, Hippelainen M. et al. A prospective, randomized study of goal-oriented hemodynamic therapy in cardiac surgical patients. Anesth Analg 2000; 90: 1052-1059
  • 23 Gillies M, Bellomo R, Doolan L. et al. Bench-to-bedside review: Inotropic drug therapy after adult cardiac surgery – a systematic literature review. Crit Care 2005; 9: 266-279
  • 24 Feneck RO, Sherry KM, Withington PS. et al. European Milrinone Multicenter Trial G. Comparison of the hemodynamic effects of milrinone with dobutamine in patients after cardiac surgery. J Cardiothorac Vasc Anesth 2001; 15: 306-315
  • 25 Totaro RJ, Raper RF. Epinephrine-induced lactic acidosis following cardiopulmonary bypass. Crit Care Med 1997; 25: 1693-1699
  • 26 Gunnicker M, Brinkmann M, Donovan TJ. et al. The efficacy of amrinone or adrenaline on low cardiac output following cardiopulmonary bypass in patients with coronary artery disease undergoing preoperative beta-blockade. Thorac Cardiovasc Surg 1995; 43: 153-160
  • 27 Royster RL, Butterworth JFt, Prielipp RC. et al. A randomized, blinded, placebo-controlled evaluation of calcium chloride and epinephrine for inotropic support after emergence from cardiopulmonary bypass. Anesth Analg 1992; 74: 3-13
  • 28 Royster RL, Butterworth JFt, Prielipp RC. et al. Combined inotropic effects of amrinone and epinephrine after cardiopulmonary bypass in humans. Anesth Analg 1993; 77: 662-672
  • 29 Ensinger H, Rantala A, Vogt J. et al. Effect of dobutamine on splanchnic carbohydrate metabolism and amino acid balance after cardiac surgery. Anesthesiology 1999; 91: 1587-1595
  • 30 Tarr TJ, Moore NA, Frazer RS. et al. Haemodynamic effects and comparison of enoximone, dobutamine and dopamine following mitral valve surgery. Eur J Anaesthesiol Suppl 1993; 8: 15-24
  • 31 Romson JL, Leung JM, Bellows WH. et al. Effects of dobutamine on hemodynamics and left ventricular performance after cardiopulmonary bypass in cardiac surgical patients. Anesthesiology 1999; 91: 1318-1328
  • 32 Parviainen I, Ruokonen E, Takala J. Dobutamine-induced dissociation between changes in splanchnic blood flow and gastric intramucosal pH after cardiac surgery. Br J Anaesth 1995; 74: 277-282
  • 33 De Hert SG, ten Broecke PW, Mertens E. et al. Effects of phosphodiesterase III inhibition on length-dependent regulation of myocardial function in coronary surgery patients. Br J Anaesth 2002; 88: 779-784
  • 34 Lobato EB, Florete jr. O, Bingham HL. A single dose of milrinone facilitates separation from cardiopulmonary bypass in patients with pre-existing left ventricular dysfunction. Br J Anaesth 1998; 81: 782-784
  • 35 Doolan LA, Jones EF, Kalman J. et al. A placebo-controlled trial verifying the efficacy of milrinone in weaning high-risk patients from cardiopulmonary bypass. J Cardiothorac Vasc Anesth 1997; 11: 37-41
  • 36 Kikura M, Sato S. The efficacy of preemptive milrinone or amrinone therapy in patients undergoing coronary artery bypass grafting. Anesth Analg 2002; 94: 22-30
  • 37 Ushio M, Egi M, Wakabayashi J. et al. Impact of milrinone administration in adult cardiac surgery patients: Updated meta-analysis. J Cardiothorac Vasc Anesth 2016; 30: 1454-1460
  • 38 Zangrillo A, Biondi-Zoccai G, Ponschab M. et al. Milrinone and mortality in adult cardiac surgery: a meta-analysis. J Cardiothorac Vasc Anesth 2012; 26: 70-77
  • 39 Majure DT, Greco T, Greco M. et al. Meta-analysis of randomized trials of effect of milrinone on mortality in cardiac surgery: an update. J Cardiothorac Vasc Anesth 2013; 27: 220-229
  • 40 Greco T, Calabro MG, Covello RD. et al. A Bayesian network meta-analysis on the effect of inodilatory agents on mortality. Br J Anaesth 2015; 114: 746-756
  • 41 Van der Linden PJ, De Hert SG, Deraedt D. et al. Hydroxyethyl starch 130/0.4 versus modified fluid gelatin for volume expansion in cardiac surgery patients: the effects on perioperative bleeding and transfusion needs. Anesth Analg 2005; 101: 629-634
  • 42 Jacob M, Fellahi JL, Chappell D. et al. The impact of hydroxyethyl starches in cardiac surgery: a meta-analysis. Crit Care 2014; 18: 656
  • 43 Hogue jr. CW, Murphy SF, Schechtman KB. et al. Risk factors for early or delayed stroke after cardiac surgery. Circulation 1999; 100: 642-647
  • 44 Roach GW, Kanchuger M, Mangano CM. et al. Adverse cerebral outcomes after coronary bypass surgery. Multicenter study of Perioperative Ischemia Research Group and the Ischemia Research and Education Foundation Investigators. N Engl J Med 1996; 335: 1857-1863
  • 45 Wolman RL, Nussmeier NA, Aggarwal A. et al. Cerebral injury after cardiac surgery: identification of a group at extraordinary risk. Multicenter study of Perioperative Ischemia Research Group (McSPI) and the Ischemia Research Education Foundation (IREF) Investigators. Stroke 1999; 30: 514-522
  • 46 Cleveland jr. JC, Shroyer AL, Chen AY. et al. Off-pump coronary artery bypass grafting decreases risk-adjusted mortality and morbidity. Ann Thorac Surg 2001; 72: 1282-1288
  • 47 Bucerius J, Gummert JF, Borger MA. et al. Stroke after cardiac surgery: a risk factor analysis of 16,184 consecutive adult patients. Ann Thorac Surg 2003; 75: 472-478
  • 48 Newman MF, Mathew JP, Grocott HP. et al. Central nervous system injury associated with cardiac surgery. Lancet 2006; 368: 694-703
  • 49 Van Dijk D, Jansen EW, Hijman R. et al. Cognitive outcome after off-pump and on-pump coronary artery bypass graft surgery: a randomized trial. JAMA 2002; 287: 1405-1412
  • 50 Kowalczyk AK, Bachar BJ, Liu H. Neuromonitoring during adult cardiac surgery. J Biomed Res 2016; 30: 171-173
  • 51 Murkin JM, Adams SJ, Novick RJ. et al. Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study. Anesth Analg 2007; 104: 51-58
  • 52 Harilall Y, Adam JK, Biccard BM, Reddi A. The effect of optimising cerebral tissue oxygen saturation on markers of neurological injury during coronary artery bypass graft surgery. Heart Lung Circ 2014; 23: 68-74
  • 53 Grocott HP. Monitoring the brain in cardiac surgery – an evolving area for research. Anaesthesia 2012; 67: 216-219
  • 54 Willingham M, Ben Abdallah A, Gradwohl S. et al. Association between intraoperative electroencephalographic suppression and postoperative mortality. Br J Anaesth 2014; 113: 1001-1008
  • 55 Doblar DD. Intraoperative transcranial ultrasonic monitoring for cardiac and vascular surgery. Semin Cardiothorac Vasc Anesth 2004; 8: 127-145
  • 56 Garlid KD, Paucek P, Yarov-Yarovoy V. et al. Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels. Possible mechanism of cardioprotection. Circ Res 1997; 81: 1072-1082
  • 57 Sato T, OʼRourke B, Marban E. Modulation of mitochondrial ATP-dependent K+ channels by protein kinase C. Circ Res 1998; 83: 110-114
  • 58 Belhomme D, Peynet J, Louzy M. et al. Evidence for preconditioning by isoflurane in coronary artery bypass graft surgery. Circulation 1999; 100 (19 Suppl.): II340-II344
  • 59 Julier K, da Silva R, Garcia C. et al. Preconditioning by sevoflurane decreases biochemical markers for myocardial and renal dysfunction in coronary artery bypass graft surgery: a double-blinded, placebo-controlled, multicenter study. Anesthesiology 2003; 98: 1315-1327
  • 60 Garcia C, Julier K, Bestmann L. et al. Preconditioning with sevoflurane decreases PECAM-1 expression and improves one-year cardiovascular outcome in coronary artery bypass graft surgery. Br J Anaesth 2005; 94: 159-165
  • 61 De Hert SG, Van der Linden PJ, Cromheecke S. et al. Cardioprotective properties of sevoflurane in patients undergoing coronary surgery with cardiopulmonary bypass are related to the modalities of its administration. Anesthesiology 2004; 101: 299-310
  • 62 Landoni G, Biondi-Zoccai GG, Zangrillo A. et al. Desflurane and sevoflurane in cardiac surgery: a meta-analysis of randomized clinical trials. J Cardiothorac Vasc Anesth 2007; 21: 502-511
  • 63 Conzen PF, Fischer S, Detter C. et al. Sevoflurane provides greater protection of the myocardium than propofol in patients undergoing off-pump coronary artery bypass surgery. Anesthesiology 2003; 99: 826-833
  • 64 Mao H, Katz N, Ariyanon W. et al. Cardiac surgery-associated acute kidney injury. Cardiorenal Med 2013; 3: 178-199
  • 65 Machado MN, Nakazone MA, Maia LN. Acute kidney injury based on KDIGO (Kidney Disease Improving Global Outcomes) criteria in patients with elevated baseline serum creatinine undergoing cardiac surgery. Rev Bras Cir Cardiovasc 2014; 29: 299-307
  • 66 Haase M, Devarajan P, Haase-Fielitz A. et al. The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies. J Am Coll Cardiol 2011; 57: 1752-1761
  • 67 Brown JR, Kramer RS, Coca SG. et al. Duration of acute kidney injury impacts long-term survival after cardiac surgery. Ann Thorac Surg 2010; 90: 1142-1148
  • 68 Hobson CE, Yavas S, Segal MS. et al. Acute kidney injury is associated with increased long-term mortality after cardiothoracic surgery. Circulation 2009; 119: 2444-2453
  • 69 Lafrance JP, Miller DR. Acute kidney injury associates with increased long-term mortality. J Am Soc Nephrol 2010; 21: 345-352
  • 70 Langham RG, Bellomo R, D’ Intini V. et al. KHA-CARI guideline: KHA-CARI adaptation of the KDIGO Clinical Practice Guideline for Acute Kidney Injury. Nephrology (Carlton) 2014; 19: 261-265
  • 71 Hoste EA, Bagshaw SM, Bellomo R. et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med 2015; 41: 1411-1423
  • 72 Haase-Fielitz A, Haase M, Devarajan P. Neutrophil gelatinase-associated lipocalin as a biomarker of acute kidney injury: a critical evaluation of current status. Ann Clin Biochem 2014; 51: 335-351
  • 73 McIlroy DR, Wagener G, Lee HT. Neutrophil gelatinase-associated lipocalin and acute kidney injury after cardiac surgery: the effect of baseline renal function on diagnostic performance. Clin J Am Soc Nephrol 2010; 5: 211-219
  • 74 Zarbock A, Schmidt C, Van Aken H. et al. Effect of remote ischemic preconditioning on kidney injury among high-risk patients undergoing cardiac surgery: a randomized clinical trial. JAMA 2015; 313: 2133-2141
  • 75 Birnie K, Verheyden V, Pagano D. et al. Predictive models for kidney disease: improving global outcomes (KDIGO) defined acute kidney injury in UK cardiac surgery. Crit Care 2014; 18: 606
  • 76 Cheungpasitporn W, Thongprayoon C, Kittanamongkolchai W. et al. Comparison of renal outcomes in off-pump versus on-pump coronary artery bypass grafting: A systematic review and meta-analysis of randomized controlled trials. Nephrology (Carlton) 2015; DOI: 10.1111/nep.12506.
  • 77 Lamy A, Devereaux PJ, Prabhakaran D. et al. Off-pump or on-pump coronary-artery bypass grafting at 30 days. N Engl J Med 2012; 366: 1489-1497
  • 78 Reents W, Hilker M, Borgermann J. et al. Acute kidney injury after on-pump or off-pump coronary artery bypass grafting in elderly patients. Ann Thorac Surg 2014; 98: 9-14
  • 79 Krajewski ML, Raghunathan K, Paluszkiewicz SM. et al. Meta-analysis of high- versus low-chloride content in perioperative and critical care fluid resuscitation. Br J Surg 2015; 102: 24-36
  • 80 Kim JY, Joung KW, Kim KM. et al. Relationship between a perioperative intravenous fluid administration strategy and acute kidney injury following off-pump coronary artery bypass surgery: an observational study. Crit Care 2015; 19: 350
  • 81 Karkouti K. Transfusion and risk of acute kidney injury in cardiac surgery. Br J Anaesth 2012; 109 (Suppl. 01) i29-i38
  • 82 Karkouti K, Grocott HP, Hall R. et al. Interrelationship of preoperative anemia, intraoperative anemia, and red blood cell transfusion as potentially modifiable risk factors for acute kidney injury in cardiac surgery: a historical multicentre cohort study. Can J Anaesth 2015; 62: 377-384
  • 83 Khan UA, Coca SG, Hong K. et al. Blood transfusions are associated with urinary biomarkers of kidney injury in cardiac surgery. J Thorac Cardiovasc Surg 2014; 148: 726-732
  • 84 Meybohm P, Bein B, Brosteanu O. et al. A multicenter trial of remote ischemic preconditioning for heart surgery. N Engl J Med 2015; 373: 1397-1407
  • 85 Kottenberg E, Thielmann M, Bergmann L. et al. Protection by remote ischemic preconditioning during coronary artery bypass graft surgery with isoflurane but not propofol – a clinical trial. Acta Anaesthesiol Scand 2012; 56: 30-38
  • 86 Hu J, Liu S, Jia P. et al. Protection of remote ischemic preconditioning against acute kidney injury: a systematic review and meta-analysis. Crit Care 2016; 20: 111