Removal of an extraluminal gastric gastrointestinal stromal tumor: the role of submucosal tunneling endoscopic resection

A 47-year-old woman presented with a 10-year history of epigastric discomfort. She had had a thyroid adenoma treated surgically 2 years previously. Esophagogastroduodenoscopy (EGD) revealed a protrusive lesion at the lesser curvature of the gastric corpus (▶Fig. 1). Endoscopic ultrasonography (EUS) revealed that the tumor was originating from the serosal layer and was exhibiting extraluminal growth (▶Fig. 2). Computed tomography (CT) scanning revealed that the lesion was located at the gastric corpus and was protruding into the abdominal cavity (▶Fig. 3; ▶Video 1).

Submucosal tunneling endoscopic resection (STER) was performed (▶Fig. 4; ▶Video 2). After a longitudinal mucosal incision had been made, a submucosal tunnel was created, which allowed the lesion to be visualized. The tumor was carefully dissected off, following which, we could see the omentum. The mucosal entry was then closed. The STER procedure was completed uneventfully within 100 minutes. The resected tumor, which measured 2.0 × 2.0 × 1.5 cm, was a low-risk gastrointestinal stromal tumor (GIST) on histopathology (▶Fig. 5).

Surgical or endoscopic removal is recommended for symptomatic or large (≥2 cm) gastric GISTs [1]. Endoscopic resection is a minimally invasive method for GISTs, and current methods include endoscopic submucosal dissection (ESD), endoscopic submucosal excava-

E-Videos

▶Fig. 1 Endoscopic images showing a protrusive lesion in the lesser curvature of the stomach body.

▶Fig. 2 Endoscopic ultrasonography (EUS) image of the lesion.

▶Fig. 3 Computed tomography (CT) scan showing extraluminal growth of the lesion.

▶Video 1

▶Video 1: Computed tomography (CT) of the lesion showing that it was located at the gastric corpus and protruding into the abdominal cavity.

inal gastric GISTs; however, complications such as perforation, fistula formation, and peritoneal infection may ensue, and closure of the defect is technically difficult [3]. STER can maintain the mucosal integrity and decreases the difficulty of closure of the mucosal defect, which theoretically reduces the risks of the above complications. It has been demonstrated to be safe and effective for treating gastric GIST, although all of the reported cases were intraluminal GISTs [4] [5]. In the present case, we successfully removed an extraluminal gastric GIST using the STER technique. As far as we know, this is the first reported case that has used STER for an extraluminal gastric GIST.

Endoscopy_UCTN_Code_TTT_1AO_2AG

Competing interests

None
References


Bibliography

DOI http://dx.doi.org/10.1055/s-0042-119047
Endoscopy 2017; 49: E11–E13
© Georg Thieme Verlag KG
Stuttgart · New York
ISSN 0013-726X