Klin Monbl Augenheilkd 2018; 235(02): 180-190
DOI: 10.1055/s-0042-119399
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Derzeitiger Stand der elektronischen „kontinuierlichen“ Augendruckmessung

Current Status of Electronic “Continuous” Eye Pressure Measurements
C. Faschinger
Augenheilkunde, Medizinische Universität Graz, Österreich
› Author Affiliations
Further Information

Publication History

eingereicht 27 September 2016

akzeptiert 11 October 2016

Publication Date:
13 January 2017 (online)

Zusammenfassung

Der intraokulare Druck (IOD) wird üblicherweise punktuell und meist 1-mal, selten mehrmals, während der Ordinationszeiten im Sitzen mit unterschiedlichen Geräten gemessen. Für Diagnostik, Progressionsbeurteilung und Therapieentscheidung bei Glaukomen kann dies zu wenig sein, da der IOD kein statischer Messwert ist, sondern über kurze und lange Zeitabschnitte unterschiedlich hohen Schwankungen (Fluktuationen) unterliegt. Deshalb ist der Wunsch nach häufigerer oder sogar kontinuierlicher Messung gerechtfertigt. Dies kann mit Selbsttonometern erfolgen (wird in dieser Übersicht nicht diskutiert) oder mittels elektronischer Hilfsmittel wie Sensoren im Auge (invasiv; in Intraokularlinse, im Sulcus ciliaris, auf der Iris, in der Hinter- oder Vorderkammer, suprachorioidal oder subkonjuktival) bzw. auf dem Auge (nicht invasiv; Sensorkontaktlinse) verwirklicht werden. Trotz zahlreicher technischer Errungenschaften und Miniaturisierungen gibt es noch keine routinemäßig anwendbare kontinuierliche Messtechnik (weder invasiv noch nicht invasiv), die Entwicklung dahin ist jedoch bereits weit fortgeschritten.

Abstract

Intraocular pressure (IOP) is generally measured at individual points and usually only once, but rarely more often, during office hours and with various different instruments. This is probably inadequate for diagnosis, assessment of progression, and therapeutic decision making, since the IOP is not a static measurement, but rather one that is subject to greater or lesser fluctuations over shorter or longer periods. This has prompted the desire for more regular or even continuous measurements. This can be achieved with self-tonometers (not discussed in this article) or by using electronic aids with sensors in the eye (invasive; in the intraocular lens, in the ciliary sulcus, on the iris, in the posterior or anterior chamber, suprachoroidal or subconjunctival) or on the eye (non-invasive; sensor contact lens). Despite numerous advances and miniaturisations, there is as yet still no continuous measurement technique (either invasive or non-invasive) that can be used routinely, but development of such a device is at an advanced stage.

 
  • Literatur

  • 1 Rüfer F. Fehlerquellen bei der Goldmann Applanationstonometrie. Ophthalmologe 2011; 108: 546-552
  • 2 Stamper RL. A history of intraocular pressure and its measurement. Optom Vis Sci 2011; 88: E16-E28
  • 3 Liu JHK, Kripke DF, Hoffman RE. et al. Nocturnal elevation of intraocular pressure in young adults. Invest Ophthalmol Vis Sci 1998; 39: 2707-2712
  • 4 Liu JHK, Kripke F, Twa M. et al. Twenty-four-hour pattern of intraocular pressure in the aging population. Invest Ophthalmol Vis Sci 1999; 40: 2912-2917
  • 5 Grippo TM, Liu JHK, Zebardast N. et al. Twenty-four-hour pattern of intraocular pressure in untreated patients with ocular hypertension. Invest Ophthalmol Vis Sci 2013; 54: 512-517
  • 6 Liu JHK, Zhang X, Kripke DF. et al. Twenty-four-hour intraocular pressure pattern associated with early glaucomatous changes. Invest Ophthalmol Vis Sci 2003; 44: 1586-1590
  • 7 Leidl MC, Choi CJ, Syed ZA. et al. Intraocular pressure fluctuation and glaucoma progression: what do we know?. Br J Ophthalmol 2014; 98: 1315-1319
  • 8 Gautam N. Postural and diurnal fluctuations in intraocular pressure across the spectrum of glaucoma. Br J Ophthalmol 2016; 100: 537-541
  • 9 Yao H, Shum AJ, Cowan M. et al. A contact lens with embedded sensor for monitoring tear glucose level. Biosens Bioelectron 2011; 26: 3290-3296
  • 10 Ittoop SM, SooHoo JR, Seibold LK. et al. Systematic review of current devices for 24-h intraocular pressure monitoring. Adv Ther 2016; 33: 1679-1690
  • 11 Yung E, Trubnik V, Katz LJ. An overview of home tonometry and telemetry for intraocular pressure monitoring in humans. Graefes Arch Clin Exp Ophthalmol 2014; 252: 1179-1188
  • 12 McLaren JW, Brubaker RF, FitzSimon JS. Continuous measurement of intraocular pressure in rabbits by telemetry. Invest Ophthalmol Vis Sci 1996; 37: 966-975
  • 13 Downs JC, Burgoyne CF, Seigfreid WP. et al. 24-hour IOP telemetry in the nonhuman primate: Implant system performance and initial characterization of IOP at multiple timescales. Invest Ophthalmol Vis Sci 2011; 52: 7365-7375
  • 14 Svedbergh B, Bäcklund Y, Hök B. et al. The IOP-IOL. A probe into the eye. Acta Ophthalmol 1992; 70: 266-268
  • 15 Kreiner CF, Streufert D. Intraokulares Drucksensorsystem zur kontinuierlichen Messung des Augeninnendrucks. Biomed Tech 2002; 47 (Suppl. 01) S179-S180
  • 16 Draeger J, Hille K. Kontinuierliche intraokulare Tonometrie mit telemetrischer Übertragung. Spektrum Augenheilkd 2000; 14: 141-145
  • 17 Hille K, Draeger J, Eggers T. et al. Technischer Aufbau, Kalibirierung und Ergebnisse mit einem neuen intraokularen Drucksensor mit telemetrischer Übertragung. Klin Monatsbl Augenheilkd 2001; 218: 376-380
  • 18 Araci IE, Su B, Quake SR. et al. An implantable microfluid device for self-monitoring of intraocular pressure. Nat Med 2014; 20: 1074-1079
  • 19 Meyer C. Sklera-Sensor. Im Internet: https://www.google.com/patents/WO2012025415A3?cl=en&dq=Implandata&hl=de&sa=X&ved=0ahUKEwiOrIOZ6MjQAhXKCMAKHXo_AO8Q6AEILTAC Stand: 27.11.2016
  • 20 Todani A, Behlau I, Fava MA. et al. Intraocular pressure measurement by radio wave telemetry. Invest Ophthalmol Vis Sci 2011; 52: 9573-9580
  • 21 Paschalis EI, Cade F, Melki S. et al. Reliable intraocular pressure measurement using automated radio-wave telemetry. Clin Ophthalmol 2014; 8: 177-185
  • 22 Melki S, Todani A, Cherfan G. et al. An implantable intraocular pressure transducer, initial safety outcomes. JAMA Ophthalmol 2014; 132: 1221-1225
  • 23 Koutsonas A, Walter P, Roessler G. et al. Implantation of a novel telemetric intraocular pressure sensor in patients with glaucoma (ARGOS Study): 1-year results. Invest Ophthalmol Vis Sci 2015; 56: 1063-1069
  • 24 Koutsonas A, Walter P, Plange N. Selbsttonometrie mit einem telemetrischen, intraokularen Drucksensor bei Patienten mit Glaukom. Klin Monatsbl Augenheilkd 2016; 233: 743-748
  • 25 [Anonymous] Safety and performance study of the ARGOS-IO (intraocular) system in patients with primary open angle glaucoma (POAG). ClinicalTrials.gov NCT02434692. Im Internet: https://clinicaltrials.gov/ct2/results?term=%2522ARGOS-IO%2522+AND+%2522POAG%2522&Search=Search Stand: 08.12.2016
  • 26 Neuhann T. IOP Sensor implanted during keratoprothesis procedure in Europe. Cat Refr Surg Today Europe 2015; 4: 12-13
  • 27 Piffaretti F, Barrettino D. Rollable and implantable intraocular pressure sensor for the continuous adaptive management of glaucoma. 35th Annual International Conference of the IEEE EMBS Osaka, 3 – 7 July, 2013, 31983201.
  • 28 Lin KM, Sant HJ, Ambati BK. et al. Intraocular pressure sensors: new approaches for real-time intraocular pressure measurement using a purely microfluid chip. Proc. 16th International Conference on Miniaturized Systems for Chemistry and Life Sciences. Oct 28–Nov 1, 2012, Okinawa, Japan. 731-733
  • 29 Mariacher S, Ebner M, Januschowski K. et al. Investigation of a novel implantable suprachoroidal pressure sensor transducer for telemetric intraocular pressure monitoring. Exp Eye Res 2016; 151: 54-60
  • 30 Rizq RN, Choi WH, Wright MM. et al. IOP measurement at the choroid surface: a feasibility study with implications for implantable microsystems. Br J Ophthalmol 2001; 85: 868-871
  • 31 Chitnis G, Maleki T, Samuels B. et al. A minimally invasive implantable wireless pressure sensor for continuous IOP monitoring. IEEE Trans Biomed Eng 2013; 60: 250-256
  • 32 Chen PJ, Rodger DC, Argawal R. et al. Implantable micromechanical parylene-based pressure sensors for unpowered intraocular pressure sensing. J Micromech Microeng 2007; 17: 1931-1938
  • 33 Ghaed MH, Ghahramani MM, Chen G. et al. Low power wireless sensor networks for infrastructure monitoring. Proc SPIE 2012; 8347: 1-9
  • 34 Chen G, Ghaed H, Haque R. et al. A Cubic-Millimeter Energy-Autonomous Wireless Intraocular Pressure Monitor. 2011 IEEE International Solid-State Circuits Conference. 310-311
  • 35 Lee Y, Kim G, Bang S. et al. A modular 1 mm3 die-stacked sensing platform with optical communication and multi-modal energy harvesting. 2012 IEEE International Solid-State Circuits Conference. 402-403
  • 36 Kim YW, Park KH, Jeoung JW. et al. Preliminary study on implantable inductive-type sensor for continuous monitoring of intraocular pressure. Clin Exp Ophthalmol 2015; 43: 830-837
  • 37 Farandos NM, Yetisen AK, Monteiro MJ. et al. Contact lens sensors in ocular diagnostics. Adv Healthc Mater 2015; 4: 792-810
  • 38 Sanchez I, Laukin V, Moya A. et al. Prototype of a nanostructured sensing contact lens for noninvasive intraocular pressure monitoring. Invest Ophthalmol Vis Sci 2011; 52: 8310-8315
  • 39 Laukin V, Sanchez I, Moya A. et al. Non-invasive intraocular pressure monitoring with a contact lens engineered with a nanostructured polymeric sensing film. Sens Actuators A 2011; 170: 36-43
  • 40 Hediger A, Kniestedt C, Zweifel S. et al. Kontinuierliche Augendruckmessung. Ophthalmologe 2009; 106: 1111-1115
  • 41 Twa MD, Roberts CJ, Karol HJ. et al. Evaluation of a contact lens-embedded sensor for IOP measurement. J Glaucoma 2010; 19: 382-390
  • 42 Tissot L. Im Internet: http://actu.epfl.ch/news/an-innovative-contact-lens-for-glaucoma/ Stand: 24.08.2016
  • 43 Chen GZ, Chan IS, Lam DCC. Capacitive contact lens sensor for continuous non-invasive intraocular pressure monitoring. Sens Actuators A 2013; 203: 112-118
  • 44 Chen GZ, Chan IS, Leung LK. et al. Soft wearable contact lens sensor for continuous intraocular pressure monitoring. Med Eng Phys 2014; 36: 1134-1139
  • 45 Chiou JC, Hsu SH, Liao YT. et al. Toward a wirelessly-powered on-lens intraocular monitoring system. IEEE J Biomed Health Inform 2016; 20: 1216-1224
  • 46 Leonardi M, Pitchon EM, Bertsch A. et al. Wireless contact lens sensor for intraocular pressure monitoring: assessment on enucleated pig eyes. Acta Ophthalmol 2009; 87: 433-437
  • 47 Greene ME, Gilman BG. Intraocular pressure measurement with instrumented contact lenses. Invest Ophthalmol 1974; 13: 299-302
  • 48 U.S. Food and Drug Administration (FDA). Im Internet: http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm489308.htm Stand: 17.08.2016
  • 49 Tojo N, Hayashi A, Otsuka M. et al. Fluctuations of the intraocular pressure in pseudoexfoliation syndrome and normal eyes measured by a contact lens sensor. J Glaucoma 2016; 25: e463-e468
  • 50 Faschinger C, Mossböck G, Krainz S. Validität und Reproduzierbarkeit von Sensorkontaktlinsen-Profilen im Vergleich zur Applanationstonometrie bei gesunden Augen. Klin Monatsbl Augenheilkd 2012; 229: 1209-1214
  • 51 Faschinger C, Mossböck G. Validity of the results of a contact lens sensor?. JAMA Ophthalmol 2013; 131: 696-697
  • 52 Hollo G, Kothy P, Vargha P. Evaluation of continuous 24-hour intraocular pressure monitoring for assessment of prostaglandin-induced pressure reduction in glaucoma. J Glaucoma 2014; 23: e6-e12
  • 53 Agnifili L, Mastropasqua R, Frezzotti P. et al. Circadian intraocular pressure patterns in healthy subjects, primary open angle and normal tension glaucoma patients with a contact lens sensor. Acta Ophthalmol 2015; 93: e14-e21
  • 54 De Moraes CG, Jasien JV, Simon-Zoula S. et al. Visual field change and 24-hour IOP-related profile with a contact lens sensor in treated glaucoma patients. Ophthalmology 2016; 123: 744-753
  • 55 Faschinger C, Mossböck G, Strohmaier C. et al. [24-hour “intraocular pressure” measurement with sensory contact lens Triggerfish: from euphoria to disillusion]. Spektrum Augenheilkd 2011; 25: 262-268
  • 56 Hjortdal JO, Jensen PK. In-vivo Measurement of corneal strain, thickness, and curvature using digital image-processing. Acta Ophthal Scand 1995; 73: 5-11
  • 57 Lam AK, Douthwaite WA. The effect of an artificially elevated intraocular pressure on the central corneal curvature. Ophthalmic Physiol Opt 1997; 17: 18-24
  • 58 Matsumoto T, Nagata R, Saishin M. et al. Measurement by holographic interferometry of the deformation of the eye accompanying changes in intraocular pressure. Appl Opt 1978; 17: 3538-3539
  • 59 Sunaric-Megevand G, Leuenberger P, Preußner PR. Assessment of the Triggerifsh contact lens sensor for measurement of intraocular pressure variations. Acta Ophthalmol 2014; 92: e414-e416
  • 60 Whitford C, Joda A, Jones S. et al. Ex vivo testing of intact globe eyes under inflation conditions to determine regional variation of mechanical stiffness. Eye Vis (Lond) 2016; 3: 21-32
  • 61 Pierscionek PK, Asejczyk-Widlicka M, Schachar RA. The effect of changing intraocular pressure on the corneal and scleral curvatures in the fresh porcine eye. Br J Ophthalmol 2007; 91: 801-803
  • 62 Ariza-Gracia MA, Zurita JF, Pinero DP. et al. Coupled biomechanical response of the cornea assessed by non-contact tonometry. A simulation study. PLoS One 2015; 10: e0121486
  • 63 Scarcelli G, Besner S, Pineda R. et al. In vivo biomechanical mapping of normal and keratoconic corneas. JAMA Ophthalmol 2015; 133: 480-482
  • 64 Shin TJ, Vito RP, Johnson LW. et al. The distribution of strain in the human cornea. J Biomech 1997; 30: 497-503
  • 65 Lewis PN, White TL, Young RD. et al. Three-dimensional arrangement of elastic fibers in the human corneal stroma. Exp Eye Res 2016; 146: 43-53
  • 66 Faschinger CW, Rabensteiner DF, Mossböck G. How do temperature variations influence the signal in the Triggerfish contact lens sensor?. Spektrum Augenheilkd 2014; 28: 197-204
  • 67 Flatau A, Solano F, Idrees S. et al. Measured changes in limbal strain during simulated sleep in face down position using an instrumented contact lens in healthy adults and adults with glaucoma. JAMA Ophthalmol 2016; 134: 375-382
  • 68 Tojo N, Abe S, Miyakoshi M. et al. Correlation between short-term and long-term intraocular pressure fluctuation in glaucoma patients. Clin Ophthalmol 2016; 10: 1713-1717
  • 69 Tseng CK, Huang YC, Tsai SW. et al. Design and fabricate of a contact lens sensor with a micro-inductor embedded for intraocular pressure monitoring. Sensors IEEE 2012; 1-4 doi:10.1109/ICSENS.2012.6411234
  • 70 Auvray P, Rousseau L, Lissorgues G. et al. A passive pressure sensor for continuously measuring the intraocular pressure in glaucomatous patients. IRBM 2012; 33: 117-122
  • 71 Mansouri K, Medeiros FA, Weinreb RN. Effect of glaucoma medications on 24-hour intraocular pressure-related patterns using a contact lens sensor. Clin Exp Ophthalmol 2015; 43: 787-795
  • 72 Kazemi A, McLaren JW, Sit AJ. Continuous monitoring of intraocular pressure: An overview of new techniques. Curr Ophthalmol Rep 2015; 3: 58-66
  • 73 Göbel K, Rüfer F, Erb C. Physiologie der Kammerwasserproduktion sowie der Tagesdruckschwankungen und deren Bedeutung für das Glaukom. Klin Monatsbl Augenheilkd 2011; 228: 104-108
  • 74 Liu JHK. Diurnal Measurement of Intraocular Pressure. J Glaucoma 2001; 10 (Suppl. 01) S39-S41
  • 75 Liu JHK, Mansouri K, Weinreb RN. Estimation of 24-hour intraocular pressure peak timing and variation using a contact lens sensor. PLoS One 2015; 10: e0129529
  • 76 Mansouri K, Weinreb RN, Liu JHK. Efficacy of a contact lens sensor for monitoring 24-h intraocular pressure related patterns. PLoS One 2015; 10: e0125530
  • 77 Hughes E, Spry P, Diamond J. 24-hour monitoring of intraocular pressure in glaucoma management: A retrospective review. J Glaucoma 2003; 12: 232-236
  • 78 Moodie J, Wilde C, Rotchford AP. et al. 24-hour versus daytime intraocular pressure phasing in the management of patients with treated glaucoma. Br J Ophthalmol 2010; 94: 999-1002
  • 79 Schiefer U, Meisner C, Ziemssen F. 24-hour intraocular pressure phasing remains an important tool in glaucoma diagnostics. Br J Ophthalmol 2011; 95: 594
  • 80 Farandos NM, Yetisen AK, Monteiro MJ. et al. Contact lens sensors in ocular diagnostics. Adv Healthc Mater 2015; 4: 792-810