Planta Med 2017; 83(06): 534-544
DOI: 10.1055/s-0042-119652
Biological and Pharmacological Activity
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Antidiabetic and Antihyperalgesic Effects of a Decoction and Compounds from Acourtia thurberi

Ana Laura Martínez
1   Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
,
Abraham Madariaga-Mazón
1   Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
,
Isabel Rivero-Cruz
1   Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
,
Robert Bye
2   Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, México
,
Rachel Mata
1   Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
› Author Affiliations
Further Information

Publication History

received 12 August 2016
revised 11 October 2016

accepted 17 October 2016

Publication Date:
04 November 2016 (online)

Abstract

The purpose of this research was to examine the preclinical efficacy of a decoction from the roots of Acourtia thurberi as a hypoglycemic, antihyperglycemic, and antihyperalgesic agent using well-known experimental models in mice. Acute oral administration of A. thurberi decoction did not produce toxic effects in mice, according to the Lorke procedure. A. thurberi decoction (31.6–316.2 mg/kg, p. o.) decreased blood glucose levels during acute hypoglycemic and the oral glucose tolerance and oral sucrose tolerance tests, both in normoglycemic and hyperglycemic animals. Phytochemical analysis of A. thurberi roots led to the isolation of perezone (1), a mixture of α-pipitzol (2) and β-pipitzol (3), and 8-β-D-glucopyranosyloxy-4-methoxy-5-methyl-coumarin (4). A pharmacological evaluation of compounds 14 (3.2–31.6 mg/kg) using the same assays revealed their hypoglycemic and antihyperglycemic actions. Finally, local administration of A. thurberi decoction (31.6–316.2 µg/paw) and compounds 14 (3.2–31.6 µg/paw) produced significant inhibition on the licking time during the formalin test in healthy and hyperglycemic mice, demonstrating their antinociceptive and antihyperalgesic potential, respectively. Altogether, these results could be related to the use of A. thurberi for treating diabetes and painful complaints in contemporary Mexican folk medicine. A suitable UPLC-ESI/MS method was developed and successfully applied to quantify simultaneously compounds 1 and 4 in A. thurberi decoction.

Supporting Information

Spectroscopic data of compounds 14 are available as Supporting Information.

 
  • References

  • 1 International Diabetes Federation. IDF Diabetes Atlas, 7th edition. Available at. http://www.diabetesatlas.org Accessed April 11, 2016
  • 2 Irons BK, Minze MG. Drug treatment of type 2 diabetes mellitus in patients for whom metformin is contraindicated. Diabetes Metab Syndr Obes 2014; 7: 15-24
  • 3 Simmonds M, Howes M. Plants used in the treatment of diabetes. In: Soumyanath A. editor Traditional medicines for modern time-antidiabetic plants. Boca Ratón: CRC Press/Taylor and Francis Group; 2006: 19-82
  • 4 Andrade-Cetto A, Heinrich M. Mexican plants with hypoglycaemic effect used in the treatment of diabetes. J Ethnopharmacol 2005; 99: 325-348
  • 5 Mata R, Cristians S, Escandón-Rivera S, Juárez-Reyes K, Rivero-Cruz I. Mexican antidiabetic herbs: valuable sources of inhibitors of α-glucosidases. J Nat Prod 2013; 76: 468-483
  • 6 Linares E, Bye R. A study of four medicinal plant complexes of Mexico and adjacent United States. J Ethnopharmacol 1987; 19: 153-183
  • 7 Martínez M. Plantas medicinales de México. 3rd edition. Mexico: Ediciones Botas; 1969: 656
  • 8 Ramírez J. Datos Para la Materia Médica Mexicana, Vol. 2. México: Instituto Médico Nacional; 1898
  • 9 Alarcón-Aguilar FJ, Román-Ramos R, Jiménez-Estrada M, Reyes-Chilpa R, González-Paredes B, Flores-Sáenz JL. Effects of three Mexican medicinal plants (Asteraceae) on blood glucose levels in healthy mice and rabbits. J Ethnopharmacol 1997; 55: 171-177
  • 10 Lorke D. A new approach to partial acute toxicity testing. Arch Toxicol 1983; 54: 275-287
  • 11 Wojcikowski K, Gobe G. Animal studies on medicinal herbs: predictability, dose conversion and potential value. Phytother Res 2014; 28: 22-27
  • 12 Islam MS, Loots du T. Experimental rodent models of type 2 diabetes: a review. Methods Find Exp Clin Pharmacol 2009; 31: 249-261
  • 13 Rivera-Chávez J, González-Andrade M, González Mdel C, Glenn AE, Mata R. Thielavins A, J and K: α-Glucosidase inhibitors from MEXU 27095, an endophytic fungus from Hintonia latiflora . Phytochemistry 2013; 94: 198-205
  • 14 Lee-Kubli CA, Mixcoatl-Zecuatl T, Jolivalt CG, Calcutt NA. Animal models of diabetes-induced neuropathic pain. Curr Top Behav Neurosci 2014; 20: 147-170
  • 15 Peltier A, Goutman SA, Callaghan BC. Painful diabetic neuropathy. BMJ 2014; 348: g1799
  • 16 Tjolsen A, Berge OG, Hunskaar S, Rosland JH, Hole K. The formalin test: an evaluation of the method. Pain 1992; 51: 5-17
  • 17 Woolf CJ. Evidence for a central component of post-injury pain hypersensitivity. Nature 1983; 306: 686-688
  • 18 Coderre TJ, Vaccarino AL, Melzack R. Central nervous system plasticity in the tonic pain response to subcutaneous formalin injection. Brain Res 1990; 535: 155-158
  • 19 McNamara CR, Mandel-Brehm J, Bautista DM, Siemens J, Deranian KL, Zhao M, Hayward NJ, Chong JA, Julius D, Moran MM, Fanger CM. TRPA1 mediates formalin-induced pain. Proc Natl Acad Sci U S A 2007; 104: 13525-13530
  • 20 Vissers KCP, Geenen F, Biermans R, Meert TF. Pharmacological correlation between the formalin test and the neuropathic pain behaviour in different species with chronic constriction injury. Pharmacol Biochem Behav 2006; 84: 479-486
  • 21 Shibata M, Ohkubo T, Takahashi H, Inoki R. Modified formalin test: characteristic biphasic pain response. Pain 1989; 38: 347-352
  • 22 Sawynok J, Liu XJ. The formalin test: characteristics and usefulness of the model. Rev Analg 2004; 7: 145-163
  • 23 Hernández-Carlos B, Burgueño-Tapia E, Joseph-Nathan P. A new coumarin from Perezia hebeclada . Magn Reson Chem 2003; 41: 962-964
  • 24 Pérez-Hernández N, Gordillo-Roman B, Arrieta-Baez D, Cerda-García-Rojas CM, Joseph-Nathan P. Complete 1H NMR assignment of cedranolides. Magn Reson Chem DOI: 10.1002/mrc.4246. advance online publication 1 July 2015
  • 25 Zepeda LG, Burgueño-Tapia E, Pérez-Hernández N, Cuevas G, Joseph-Nathan P. NMR-based conformational analysis of perezone and analogues. Magn Reson Chem 2013; 51: 245-250
  • 26 Pari L, Rajarajeswari N. Efficacy of coumarin on hepatic key enzymes of glucose metabolism in chemical induced type 2 diabetic rats. Chem Biol Interact 2009; 181: 292-296
  • 27 Zhao DG, Zhou AY, Du Z, Zhang Y, Zhang K, Ma YY. Coumarins with α-glucosidase and α-amylase inhibitory activities from the flower of Edgeworthia gardneri . Fitoterapia 2015; 107: 122-127
  • 28 Abreu PA, Wilke DV, Araujo AJ, Marinho-Filho JDB, Ferreira EG, Ribeiro CMR, Pinheiro LS, Amorim KW, Valverde AL, Epifanio RA, Costa-Lotufo LV, Jimenez PC. Perezone, from the gorgonian Pseudopterogorgia rigida, induces oxidative stress in human leukemia cells. Rev Bras Farmacogn 2015; 25: 634-640
  • 29 International Conference on Harmonization. Text on validation of analytical procedures. Harmonized tripartite guideline Q2(R1). International Conference on Harmonization, Geneva, 1–13. Available at http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1__Guideline.pdf Accessed April 11, 2016
  • 30 Ovalle-Magallanes B, Medina-Campos ON, Pedraza-Chaverri J, Mata R. Hypoglycemic and antihyperglycemic effects of phytopreparations and limonoids from Swietenia humilis . Phytochemistry 2015; 110: 111-119
  • 31 Hunskaar S, Hole K. The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain 1987; 30: 103-114