Z Orthop Unfall 2017; 155(02): 232-248
DOI: 10.1055/s-0042-121623
CME-Fortbildung
Georg Thieme Verlag KG Stuttgart · New York

Achskorrektur am wachsenden Skelett – therapeutisches Vorgehen

Deformity Correction in Skeletally Immature Patients – Therapy
Madeleine Willegger
,
Alexander Kolb
,
Catharina Chiari
Further Information

Publication History

Publication Date:
25 April 2017 (online)

Die Korrektur von Achsdeformitäten basiert auf einer genauen Diagnostik und erfolgt immer chirurgisch. Ziel der operativen Achskorrektur ist die Wiederherstellung einer geraden mechanischen Beinachse, um einer frühzeitigen Arthrose vorzubeugen. Dieser Beitrag stellt die verschiedenen Techniken vor.

Kernaussagen
  • Ziel der operativen Achskorrektur ist die Wiederherstellung einer geraden mechanischen Beinachse.

  • Die Therapie der Achsdeformitäten am wachsenden kindlichen Skelett besteht in der chirurgischen Achskorrektur.

  • Besteht eine frontale Achsabweichung des Kniegelenks (varus/valgus) bei offenen Wachstumsfugen, kann mittels Hemiepiphysiodese (HED) eine Achskorrektur durch Wachstumslenkung (engl. „guided growth“) erzielt werden. Die direkte Manipulation der Wachstumsfuge (Physe) erlaubt eine graduelle Achskorrektur durch einen minimalinvasiven Eingriff. Der derzeitige Goldstandard ist die temporäre HED mit einer 2-Loch-Platte nach Zuggurtungsprinzip. Eine adäquate Planung sowie die Wachstums- und Korrekturprognose sind essenziell für die Wahl des Operationszeitpunkts und den Erfolg der Operation. Unter den Voraussetzungen der korrekten Deformitätenanalyse und Wachstumsprognose können ausgezeichnete klinische Ergebnisse erzielt werden.

  • Bei Rotationsfehlstellungen, sagittalen oder multiplanaren Deformitäten müssen invasivere Operationsverfahren angewandt werden. Hier stehen Osteotomien mit gradueller oder akuter Deformitätenkorrektur im Vordergrund. Die Osteosynthese wird je nach chirurgischem Verfahren ausgewählt. Bei graduellen Korrekturen werden externe Fixateure verwendet, bei akuten Korrekturen kann von gekreuzten K-Drähten bis hin zur winkelstabilen Platte oder dem intramedullären Nagel jegliche Osteosynthese verwendet werden.

  • Die Osteosynthesetechnik ist ebenfalls abhängig von der Lokalisation der Osteotomie.

  • Besondere Acht muss auf die nahe liegende Wachstumsfuge gegeben werden, um keine iatrogenen Verletzungen mit einer resultierenden Beinlängendifferenz (BLD) oder sekundären Deformität zu kreieren.

  • Neue Implantate machen minimalinvasive Operationstechniken möglich.

  • Forschungsprojekte beschäftigen sich derzeit noch mit experimentellen Techniken zur biologischen Manipulation der Wachstumsfuge.

 
  • Literatur

  • 1 Willegger M, Kolb A, Chiari C. Achsdeformitäten am wachsenden Skelett – diagnostisches Vorgehen. Z Orthop Unfall 2017; 155: 105-119
  • 2 Hefti F. Achsenfehler an den unteren Extremitäten. Orthopäde 2000; 9: 814-820
  • 3 Butler RJ, Marchesi S, Royer T. et al. The effect of a subject-specific amount of lateral wedge on knee mechanics in patients with medial knee osteoarthritis. J Orthop Res 2007; 25: 1121-1127
  • 4 Ghanem I, Karam JA, Widmann RF. Surgical epiphysiodesis indications and techniques: update. Curr Opin Pediatr 2011; 23: 53-59
  • 5 Diméglio A, Charles YP, Daures JP. et al. Accuracy of the Sauvegrain method in determining skeletal age during puberty. J Bone Joint Surg Am 2005; 87: 1689-1696
  • 6 Kelly PM, Diméglio A. Lower-limb growth: how predictable are predictions?. J Child Orthop 2008; 2: 407-415
  • 7 Paley D. Principles of Deformity Correction. Berlin: Springer; 2014
  • 8 Stevens PM. Guided growth: 1933 to the present. Strategies Trauma Limb Reconstr 2006; 1: 29-35
  • 9 Dietz FR, Merchant TC. Indications for osteotomy of the tibia in children. J Pediatr Orthop 1990; 10: 486-490
  • 10 Paley D, Herzenberg JE, Tetsworth K. et al. Deformity planning for frontal and sagittal plane corrective osteotomies. Orthop Clin North Am 1994; 25: 425-465
  • 11 Wanivenhaus A, Schiller C. Die Epiphysiodese als Mittel zur Wachstumslenkung (Berechnung einer Winkelfunktion zur Planung von Achsfehlerkorrekturen). Z Orthop Ihre Grenzgebiete 1989; 127: 125-129
  • 12 Bowen JR, Torres RR, Forlin E. Partial epiphysiodesis to address genu varum or genu valgum. J Pediatr Orthop 1992; 12: 359-364
  • 13 Bowen JR, Leahey JL, Zhang ZH. et al. Partial epiphysiodesis at the knee to correct angular deformity. Clin Orthop Relat Res 1985; 198: 184-1890
  • 14 Ballal MS, Bruce CE, Nayagam S. Correcting genu varum and genu valgum in children by guided growth: temporary hemiepiphysiodesis using tension band plates. J Bone Joint Surg Br 2010; 92: 273-276
  • 15 Stevens PM. Guided growth for angular correction: a preliminary series using a tension band plate. J Pediatr Orthop 2007; 27: 253-259
  • 16 An KN, Himeno S, Tsumura H. et al. Pressure distribution on articular surfaces: application to joint stability evaluation. J Biomech 1990; 23: 1013-1020
  • 17 Stevens PM, MacWilliams B, Mohr RA. Gait analysis of stapling for genu valgum. J Pediatr Orthop 2004; 24: 70-74
  • 18 Sharma L, Song J, Dunlop D. et al. Varus and valgus alignment and incident and progressive knee osteoarthritis. Ann Rheum Dis 2010; 69: 1940-1945
  • 19 Tanamas S, Hanna FS, Cicuttini FM. et al. Does knee malalignment increase the risk of development and progression of knee osteoarthritis? A systematic review. Arthritis Rheum 2009; 61: 459-467
  • 20 Sharma L, Song J, Felson DT. et al. The role of knee alignment in disease progression and functional decline in knee osteoarthritis. JAMA 2001; 286: 188-195
  • 21 Phemister DB. Operative arrestment of longitudinal growth of bones in the treatment of deformities. J Bone Joint Surg 1933; 15: 1-15
  • 22 Canale ST, Russell TA, Holcomb RL. Percutaneous epiphysiodesis: experimental study and preliminary clinical results. J Pediatr Orthop 1986; 6: 150-156
  • 23 Ogilvie JW. Epiphysiodesis: evaluation of a new technique. J Pediatr Orthop 1986; 6: 147-149
  • 24 Inan M, Chan G, Bowen JR. Correction of angular deformities of the knee by percutaneous hemiepiphysiodesis. Clin Orthop Relat Res 2007; 456: 164-169
  • 25 Haas SL. Retardation of bone growth by a wire loop. J Bone Joint Surg Am 1945; 27: 25-36
  • 26 Blount WP, Clarke GR. Control of bone growth by epiphyseal stapling; a preliminary report. J Bone Joint Surg Am 1949; 31?A: 464-478
  • 27 Blount WP. A mature look at epiphyseal stapling. Clin Orthop Relat Res 1971; 77: 158-163
  • 28 Frantz CH. Epiphyseal stapling: a comprehensive review. Clin Orthop Relat Res 1971; 77: 149-157
  • 29 Fraser RK, Dickens DR, Cole WG. Medial physeal stapling for primary and secondary genu valgum in late childhood and adolescence. J Bone Joint Surg Br 1995; 77: 733-735
  • 30 Aykut US, Yazici M, Kandemir U. et al. The effect of temporary hemiepiphyseal stapling on the growth plate: a radiologic and immunohistochemical study in rabbits. J Pediatr Orthop 2005; 25: 336-341
  • 31 Schroerlucke S, Bertrand S, Clapp J. et al. Failure of Orthofix eight-Plate for the treatment of Blount disease. J Pediatr Orthop 2009; 29: 57-60
  • 32 Mielke CH, Stevens PM. Hemiepiphyseal stapling for knee deformities in children younger than 10 years: a preliminary report. J Pediatr Orthop 1996; 16: 423-429
  • 33 Brockway A, Craig WA, Cockreli BR. End-result study of sixty-two stapling operations. J Bone Joint Surg Am 1954; 36-A: 1063-1070
  • 34 De Brauwer V, Moens P. Temporary hemiepiphysiodesis for idiopathic genua valga in adolescents: percutaneous transphyseal screws (PETS) versus stapling. J Pediatr Orthop 2008; 28: 549-554
  • 35 Métaizeau JP, Wong-Chung J, Bertrand H. et al. Percutaneous epiphysiodesis using transphyseal screws (PETS). J Pediatr Orthop 1998; 18: 363-369
  • 36 Campens C, Mousny M, Docquier PL. Comparison of three surgical epiphysiodesis techniques for the treatment of lower limb length discrepancy. Acta Orthop Belg 2010; 76: 226-232
  • 37 Khoury JG, Tavares JO, McConnell S. et al. Results of screw epiphysiodesis for the treatment of limb length discrepancy and angular deformity. J Pediatr Orthop 2007; 27: 623-628
  • 38 Burghardt RD, Herzenberg JE, Standard SC. et al. Temporary hemiepiphyseal arrest using a screw and plate device to treat knee and ankle deformities in children: a preliminary report. J Child Orthop 2008; 2: 187-197
  • 39 Ilharreborde B, Gaumetou E, Souchet P. et al. Efficacy and late complications of percutaneous epiphysiodesis with transphyseal screws. J Bone Joint Surg Br 2012; 94: 270-275
  • 40 Eastwood DM, Sanghrajka AP. Guided growth: recent advances in a deep-rooted concept. J Bone Joint Surg Br 2011; 93: 12-18
  • 41 Jelinek EM, Bittersohl B, Martiny F. et al. The 8-plate versus physeal stapling for temporary hemiepiphyseodesis correcting genu valgum and genu varum: a retrospective analysis of thirty five patients. Int Orthop 2012; 36: 599-605
  • 42 Wiemann JM, Tryon C, Szalay EA. Physeal stapling versus 8-plate hemiepiphysiodesis for guided correction of angular deformity about the knee. J Pediatr Orthop 2009; 29: 481-485
  • 43 Saran N, Rathjen KE. Guided growth for the correction of pediatric lower limb angular deformity. J Am Acad Orthop Surg 2010; 18: 528-536
  • 44 Lauge-Pedersen H, Hägglund G. Eight plate should not be used for treating leg length discrepancy. J Child Orthop 2013; 7: 285-288
  • 45 Pendleton AM, Stevens PM, Hung M. Guided growth for the treatment of moderate leg-length discrepancy. Orthopedics 2013; 36: e575-e580
  • 46 Gaumétou E, Mallet C, Souchet P. et al. Poor efficiency of eight-plates in the treatment of lower limb discrepancy. J Pediatr Orthop 2016; 36: 715-719
  • 47 Stewart D, Cheema A, Szalay EA. Dual 8-plate technique is not as effective as ablation for epiphysiodesis about the knee. J Pediatr Orthop 2013; 33: 843-846
  • 48 Klatt J, Stevens PM. Guided growth for fixed knee flexion deformity. J Pediatr Orthop 2008; 28: 626-631
  • 49 Pinkowski JL, Weiner DS. Complications in proximal tibial osteotomies in children with presentation of technique. J Pediatr Orthop 1994; 15: 307-312
  • 50 Steel HH, Sandrow RE, Sullivan PD. Complications of tibial osteotomy in children for genu varum or valgum. Evidence that neurological changes are due to ischemia. J Bone Joint Surg Am 1971; 53: 1629-1635
  • 51 Slawski DP, Schoenecker PL, Rich MM. Peroneal nerve injury as a complication of pediatric tibial osteotomies: a review of 255 osteotomies. J Pediatr Orthop 1993; 14: 166-172
  • 52 Mycoskie PJ. Complications of osteotomies about the knee in children. Orthopedics 1981; 4: 1005-1015
  • 53 Goldman V, Green DW. Advances in growth plate modulation for lower extremity malalignment (knock knees and bow legs). Curr Opin Pediatr 2010; 22: 47-53
  • 54 Bar-On E, Becker T, Katz K. et al. Corrective lower limb osteotomies in children using temporary external fixation and percutaneous locking plates. J Child Orthop 2009; 3: 137-143
  • 55 Feldman DS, Madan SS, Ruchelsman DE. et al. Accuracy of correction of tibia vara: acute versus gradual correction. J Pediatr Orthop 2005; 26: 794-798
  • 56 Gilbody J, Thomas G, Ho K. Acute versus gradual correction of idiopathic tibia vara in children: a systematic review. J Pediatr Orthop 2009; 29: 110-114
  • 57 Gugenheim JJ, Brinker MR. Bone realignment with use of temporary external fixation for distal femoral valgus and varus deformities. J Bone Joint Surg Am 2003; 85-A: 1229-1237
  • 58 Eralp L, Kocaoglu M, Cakmak M. et al. A correction of windswept deformity by fixator assisted nailing. A report of two cases. J Bone Joint Surg Br 2004; 86: 1065-1068
  • 59 Rogers MJ, McFadyen I, Livingstone JA. et al. Computer hexapod assisted orthopaedic surgery (CHAOS) in the correction of long bone fracture and deformity. J Orthop Trauma 2007; 21: 337-342
  • 60 Barksfield RC, Monsell FP. Predicting translational deformity following opening-wedge osteotomy for lower limb realignment. Strategies Trauma Limb Reconstr 2015; 10: 167-173
  • 61 Scheffer MM, Peterson HA. Opening-wedge osteotomy for angular deformities of long bones in children. J Bone Joint Surg Am 1994; 76: 325-334
  • 62 Chen LC, Chan YS, Wang CJ. Opening-wedge osteotomy, allografting with dual buttress plate fixation for severe genu recurvatum caused by partial growth arrest of the proximal tibial physis: a case report. J Orthop Trauma 2004; 18: 384-387
  • 63 El-Rosasy M, Ayoub M. Acute correction of proximal tibial deformities in adolescents using Ilizarov external fixator: focal-dome versus straight-cut osteotomy. J Pediatr Orthop B 2007; 16: 113-119
  • 64 Nadeem RD, Quick TJ, Eastwood DM. Focal dome osteotomy for the correction of tibial deformity in children. J Pediatr Orthop B 2005; 14: 340-346
  • 65 Martin SD, Moran MC, Martin TL. et al. Proximal tibial osteotomy with compression plate fixation for tibia vara. J Pediatr Orthop 1993; 14: 619-622
  • 66 Krengel WF, Staheli LT. Tibial rotational osteotomy for idiopathic torsion. A comparison of the proximal and distal osteotomy levels. Clin Orthop Relat Res 1992; 283: 285-289
  • 67 Ryan DD, Rethlefsen SA, Skaggs DL. et al. Results of tibial rotational osteotomy without concomitant fibular osteotomy in children with cerebral palsy. J Pediatr Orthop 2004; 25: 84-88
  • 68 Manouel M, Johnson LO. The role of fibular osteotomy in rotational osteotomy of the distal tibia. J Pediatr Orthop 1993; 14: 611-614
  • 69 Dodgin DA, De Swart RJ, Stefko RM. et al. Distal tibial/fibular derotation osteotomy for correction of tibial torsion: review of technique and results in 63 cases. J Pediatr Orthop 1997; 18: 95-101
  • 70 Arami A, Bar-On E, Herman A. et al. Guiding femoral rotational growth in an animal model. J Bone Joint Surg Am 2013; 95: 2022-2027
  • 71 Böhm S, Krieg AH, Hefti F. et al. Growth guidance of angular lower limb deformities using a one-third two-hole tubular plate. J Child Orthop 2013; 7: 289-294
  • 72 Lin TY, Kao HK, Li WC. et al. Guided growth by a stainless-steel tubular plate. J Pediatr Orthop B 2013; 22: 306-310
  • 73 Sabharwal S, Louie KW, Reid JS. Whatʼs new in limb-lengthening and deformity correction. J Bone Joint Surg Am 2014; 96: 1399-1406
  • 74 Boyer MI, Bowen CV. Microvascular transplantation of epiphyseal plates: studies utilizing allograft donor material. Orthop Clin North Am 2007; 38: 103-108