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In adult, based on bodymass index (BMI), which is theweight
(kg)/height (m2), underweight, normal, overweight, and
obesity have been classified as follows1: underweight,<18.5
kg/m2, normal, 18.5 to 24.9 kg/m2; overweight, 25 to
29.9 kg/m2; and obesity, >30kg/m2. Obesity is further clas-

sified into three categories: I, 30 to 34.9 kg/m2; II, 35 to
39.9 kg/m2; and III, �40.0 kg/m2, which is extreme obesity.
Obesity is a global epidemic.2 Prevalence of obesity has
increased over the last few decades in epidemic propor-
tions.3 Prevalence of obesity is 47% in Hispanics, 46.8% in
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Abstract This article deals with the role of AGE (advanced glycation end products)–RAGE
(receptor for AGE) stress (AGE/sRAGE) in the development of coronary artery disease
(CAD) in obesity. CAD is due to atherosclerosis in coronary artery. The serum/plasma
levels of AGE and sRAGE are reduced, while AGE–RAGE stress and expression of RAGE
are elevated in obese individuals. However, the levels of AGE are elevated in obese
individuals with more than one metabolic syndrome. The increases in the AGE–RAGE
stress would elevate the expression and production of atherogenic factors, including
reactive oxygen species, nuclear factor-kappa B, cytokines, intercellular adhesion
molecule-1, vascular cell adhesion molecule-1, endothelial leukocyte adhesion mole-
cules, monocyte chemoattractant protein-1, granulocyte-macrophage colony-stimu-
lating factor, and growth factors. Low levels of sRAGE would also increase the
atherogenic factors. The increases in the AGE–RAGE stress and decreases in the levels
of sRAGE would induce development of atherosclerosis, leading to CAD. The therapeu-
tic regimen for AGE–RAGE stress–induced CAD in obesity would include lowering of
AGE intake, prevention of AGE formation, degradation of AGE in vivo, suppression of
RAGE expression, blockade of AGE–RAGE interaction, downregulation of sRAGE
expression, and use of antioxidants. In conclusion, the data suggest that AGE–RAGE
stress is involved in the development of CAD in obesity, and the therapeutic
interventions to reduce AGE–RAGE would be helpful in preventing, regressing, and
slowing the progression of CAD in obesity.
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non-Hispanic blacks, 37.9% in non-Hispanic whites, and
12.7% in Asians.3 Prevalence of obesity is 36.5% in the
western world.4 Obesity is associated with type 2 diabetes,
hypertension, heart disease, sleep apnea, and certain type of
cancer. Obese patients have increased preponderance for
development of atherosclerotic diseases. Autopsy has shown
that atherosclerotic changes in the coronary artery are
markedly elevated in patients with multiple risk factors
including obesity.5 Obesity is an independent risk factor
for coronary artery disease (CAD).6–8 It has been reported
that loss of weight has favorable effects on the development
of CAD.9–11 It has been reported that 43 and 24% of all
coronary revascularization in recent years were performed
in overweight and obese patients, respectively.12 These data
suggest that CAD is associatedwith obesity. Themechanisms
involved in the development of atherosclerosis in obesity
have been suggested to be abnormality in lipid metabolism,
insulin resistance, inflammation, endothelial dysfunction,
and adipokine imbalance.13 CAD is due to atherosclerosis
in the coronary arteries and rupture of the atherosclerotic
plaque.14,15 Advanced glycation end products (AGEs) and its
cell receptors RAGE (receptor for AGE), and soluble receptors
sRAGE (soluble receptor for AGE) and esRAGE (endogenous
secretory receptor for AGE) have been implicated in numer-
ous diseases including non–ST-segment elevation myocardi-
al infarction,16 restenosis following percutaneous coronary
intervention,17 hyperthyroidism,18 hypertension,19 de-
endothelialization-induced neointima hyperplasia in carotid
artery of wild-type mice,20 and accelerated atherosclerosis
in apo-E-deficient mice.21 AGE–RAGE axis (AGE, RAGE,
sRAGE, and esRAGE) may be involved in obesity-induced
CAD. This article addresses the AGE–RAGE axis, AGE–RAGE
stress, the role of AGE–RAGE stress in the pathogenesis of
obesity-induced CAD, and treatment strategy for obesity-
induced CAD.

AGE–RAGE Axis and AGE–RAGE Stress

AGEs are heterogeneous groups of irreversible adducts pro-
duced by nonenzymatic glycation and glycoxidation of pro-
teins, lipids, and nucleic acid with reducing sugars.22,23

There are mainly three receptors for AGEs, including full-
length receptor for AGEs (RAGE), which is cell-bound and is
multiligand, N-truncated RAGE, and c-truncated RAGE. The
function of N-truncated RAGE is not known. The c-truncated
RAGE circulates in the blood and other body fluids and lacks
transmembrane and cytoplasmic domain. C-truncated RAGE
has two isoforms, cleaved RAGE (cRAGE) and endogenous
secretory RAGE (esRAGE). c-RAGE is generated at the cell
surface by proteolytic cleavage of full-length RAGE at the
boundary between its extracellular and transmembrane
part.24 Matrix metalloproteinase-9 (MMP-9) and ADAM
metallopeptidase domain 10 (ADAM10) are involved in
cleavage.25,26 esRAGE is formed from alternative splicing of
RAGEpre-mRNA.27 Total sRAGE comprises both cRAGE and
esRAGE. Both sRAGE and esRAGE are measured by enzyme-
linked immunosorbent assay (ELISA) kit. cRAGE is the differ-

ence between sRAGE and esRAGE. Serum levels of esRAGE
are 20 to 30% of the serum levels of sRAGE.28,29

Atherogenic Function of AGE

AGE can induce atherosclerosis by affecting the factors
involved in the development of atherosclerosis. It makes
low-density lipoprotein (LDL) more atherogenic by modify-
ing apoB100.30 AGE glycates apoB100 and phospholipid
component of LDL, which affects the LDL clearance and
enhances the susceptibility of LDL oxidation.31,32 Oxidized
LDL reduces its recognition by scavenger receptor in the liver
and hence levels of oxidized LDL in the body are in-
creased.33,34 Glycated LDL increases smooth muscle cell
proliferation and differentiation.35 Reverse cholesterol
transport is interfered by AGE36 and that increases the
extracellular accumulation of cholesterol. AGE increases
the accumulation of cholesterol and cholesterol esters in
macrophages in vitro.37 AGE enhances the synthesis of
extracellular matrix,38 traps endothelial LDL,39 and cross-
binds with collagen.40 Matrix-bound AGE enhances the
synthesis of endothelin 1,41 which is implicated in the
development of atherosclerosis.42 AGE quenches nitric oxide
(NO).43 Matrix-bound AGE reduces synthesis of NO,44

decreases half-life of nitric oxide synthase,45 quenches and
inactivates NO,46 and suppresses antiproliferative effects of
NO.47

Atherogenic Function of Interaction of AGE
with RAGE

Interaction of AGE with RAGE generates reactive oxygen
species (ROS) through activation of nicotinamide adenine
dinucleotide phosphate hydrogen (NADPH) oxidase.48 ROS
activates nuclear factor-kappa B (NF-κB),49 which in turn
activates varieties of proinflammatory cytokine genes, in-
cluding tumor necrosis factor-α (TNF-α), TNF-β, interleukin
(IL)-1, IL-2, IL-6, IL-8, and interferon gamma.50–52 AGE–RAGE
interaction increases the expression of intercellular adhesion
molecule-1 (ICAM-1), vascular cell adhesion molecule-1
(VCAM-1), and E-selectin through NF-κB.52 Expressions of
ICAM-1, VCAM-1, and endothelial leucocyte adhesion
molecules are also upregulated by ROS.53–55 AGE–RAGE
interaction upregulates the expression of monocyte chemo-
attractant protein-1 (MCP-1)mRNA inmesangial cells,56 and
MCP-1 and vascular endothelial growth factor in human
cultured mesangial cells.57 AGE–RAGE interaction upregu-
lates the expression and secretion of granulocyte-macro-
phage colony-stimulating factor (GM-CSF)58 and the
expression of insulin-like growth factor-159 and platelet-
derived growth factor.60 AGE–RAGE interaction enhances
the expression of transforming growth factor-β (TGF-β),61

which takes part in the formation of extracellular matrix.
AGE–RAGE interaction in smooth muscle cells increases
chemotactic migration, cell proliferation, and production
of fibrogen.62,63 Cytokines, adhesion molecules, GM-CSF,
and growth factors are required in the development of
atherosclerosis.
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Antiatherogenic Function of sRAGE and
esRAGE

sRAGE acts as a protective endogenous decoy for RAGE by
binding with AGE or other RAGE ligands.64,65 Binding of
sRAGE or esRAGE with AGE does not activate intracellular
signaling.66 sRAGE is a competitive inhibitor of interaction of
AGE with RAGE.67 Interaction of sRAGE with AGE would
reduce the amount of AGE to interact with RAGE and hence
the atherogenic factors such as ROS, NF-κB, MCP-1, GM-CSF,
cytokines, cell adhesion molecules, and growth factors will
be reduced, resulting in the protection of atherosclerosis.

AGE–RAGE Stress

Prasad and Mishra68 have coined three terminologies (stres-
sors, antistressors, and AGE–RAGE stress) for AGE–RAGE
axis. AGE and RAGE have been coined as stressors. Enzymatic
degradation of AGE (glyoxalase-1 and glyoxalase-2), recep-
tor-mediated degradation of AGE (AGE receptor [AGER]-1,
AGER-2, and AGER-3), and sRAGE have been coined as
antistressors. AGE–RAGE stress has been coined as a shift
in the balance between stressors and antistressors in favor of
stressors. Prasad and Mishra68 have developed formulas for
assessment of AGE–RAGE stress and have suggested that the
ratio of AGE/sRAGE formula would be a simple and feasible
measure of AGE–RAGE stress. A high ratio of AGE/sRAGE
indicates the presence of AGE–RAGE stress, resulting in
tissue damage, initiation, and progression of the diseases
and their complications.

Serum/Plasma and Tissue Levels of AGE in
Obesity

Serum/plasma levels of AGEs have been reported to be
variable in obese individuals. Serum levels of AGE are elevat-
ed in obese individuals with more than one metabolic
syndrome.69 Measurements of serum levels of AGE were
made in diabetic obese, diabetic nonobese, nondiabetic
obese, and nondiabetic nonobese individuals by Amin
et al.70 Theyobserved that the levels of carboxymethyl-lysine
(CML) were markedly elevated in diabetic obese, diabetic
nonobese, and nondiabetic obese compared with nondiabet-
ic nonobese individuals. Also, the serum levels of CML were
significantly elevated in diabetic obese compared with dia-
betic nonobese individuals. The CML levelswere significantly
elevated in nondiabetic obese compared with nondiabetic
nonobese individuals. They observed that CML levels were
predictor for obesity based on regression analysis. They also
reported that there was a positive correlation between the
levels of CML and BMI in all four groups.

There are reports showing a decrease in the serum levels
of AGE in obesity. Children/adolescents with obesity had
significantly lower levels of plasma CML and fluorescent AGE
as compared with nonobese controls.71 Plasma levels of CML
have been reported to be lower among obese middle school
children.72 Gaens et al73 reported a lower levels of plasma
CML in obese individuals compared with lean adults. Serum

AGE (CML and pentosidine) levels were significantly lower in
individuals with higher BMI.74 They also reported that there
was a negative correlation of CML and pentosidine with BMI.
However, Kilhovd et al75 have reported that there was no
significant correlation between AGE and BMI. It has been
reported that the serum levels of CML were lower in obese
adolescents (15–19 years) than in adolescents with normal
body weight.76 The authors also reported that the levels of
total AGE measured by fluorescence were lower in obese
adolescents compared with adolescents with normal body
weight.

Obesity has been reported to be associatedwith increased
accumulation of CML and expression of RAGE in omental
adipose tissue and with decreased levels of plasma AGE as
comparedwith lean individuals.77 RAGE ligands are elevated
in metabolic organs of wild-type mice on high-fat diet.78

These investigators78 also reported that sRAGE administra-
tion significantly reduced weight gain in mice on high-fat
diet. The formation of CML in adipose tissue is elevated in
obesity.79,80 Although the tissue levels of AGE are elevated in
obesity, the serum levels of AGE are reduced.71 There is an
inverse association between serum CML and fat mass.81

The serum levels of CML in metabolically healthy adoles-
cents were similar to normal weight adolescents.82 AGE-
related fluorescence in plasma is not significantly affected by
feeding fat that increases bodyweight.83 It has been reported
that the serum levels of AGEwere reduced by 7.21%with low
calorie diet for 2 months in overweight individuals, and this
change in AGE was positively correlated with change in
BMI.84

In summary, the data show that the levels of
serum/plasma AGE are reduced in obese individuals, while
the serum levels of AGE are elevated in obese individuals
with more than one metabolic syndrome. Also, obesity is
associated with increased accumulation of CML in omental
adipose tissue and metabolic organs of wild-type mice on
high-fat diet.

Expression of RAGE in Obesity

Obesity has been reported to be associated with increased
expression of RAGE in omental adipose tissue comparedwith
lean individuals.77 There is an elevation of RAGE expression
in adipose tissue of obese individuals and has been reported
to play a role in atherosclerosis.85 However, Leuner et al86

have shown that absence of RAGE accelerates weight gain in
mice. Blockade of RAGEwith sRAGE in wild mice suppressed
weight gain.78 RAGE expression in mononuclear cells of
peripheral blood of obese persons were similar to that in
control persons.87

In summary, AGE expression in adipose tissue is upregu-
lated, while its expression in mononuclear cells of blood
remained unaltered in obese individuals.

Serum/Plasma Levels of sRAGE in Obesity

Serum levels of sRAGE were lower in small and large obese
children compared with normal-weighing children at
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birth.88 The levels of serum sRAGE were lower in obese
adolescent individuals compared with adolescent with nor-
mal weight.76 sRAGE levels were lower in obese prepubertal
children comparedwith normal-weight children.89He et al90

reported that BMI is an independent predictor of plasma
sRAGE levels in adolescents. However, Rowisha et al91

reported a decrease in the levels of serum sRAGE in obese
adolescents. Serum levels of sRAGE were lower in obese
diabetics, nonobese diabetics, and nondiabetic obese com-
pared with nondiabetic nonobese individuals.70 Amin et al70

reported that regression analysis of the sRAGE shows that
sRAGE is a predictor of obesity. These investigators also
showed that sRAGE was negatively correlated with CML
and BMI. sRAGE is reduced in individuals with obesi-
ty.29,92–95 Guclu et al96 reported a significant negative cor-
relation of sRAGE with body weight, BMI, and west and hip
circumference. Obese women have lower sRAGE levels com-
pared with women with normal weight, and there was an
inverse correlation of sRAGE with BMI and total body fat.97

D’Adamo et al89 have shown that sRAGE and esRAGE levels in
serumwere significantly lower in obese prepubertal children
with or without liver steatosis. Brix et al98 reported a
significant increase in total sRAGE as a result of weight
loss following bariatric surgery. This also shows that levels
of sRAGE are reduced in obesity.

In summary, serum/plasma levels of sRAGE and esRAGE
are lower in obese individual compared with nonobese
individuals. Also, there is an inverse correlation between
sRAGE and AGE.

Serum/Plasma Levels of esRAGE in Obesity

Chiavaroli et al87 have reported that serum levels of esRAGE
were lower in small bornweight and large bornweight obese
children than normal weight of similar age group. Miranda
et al99 have shown that loss of weight and body fat mass is
associated with increases in the serum levels of sRAGE,
esRAGE, and cRAGE. Levels of esRAGE in plasma are associ-
ated with obesity in women.100

In summary serum/plasma levels of esRAGE are lower in
obese individuals as compared with nonobese individuals.

AGE–RAGE Stress in Obesity

No data are available in the literature regarding AGE–RAGE
stress in obesity. All other investigators have measured
either AGE or sRAGE in obesity, except Amin et al,70 who
measured both AGE and sRAGE in the same group of patients.
However, they did not assess AGE–RAGE stress. Amin et al70

have measured AGE and sRAGE in diabetic obese, diabetic
nonobese, nondiabetic obese, and nondiabetic nonobese
patients. We calculated the AGE–RAGE stress using their
data. We observed that AGE–RAGE stress in diabetic obese,
diabetic nonobese, nondiabetic obese, and nondiabetic non-
obese (healthy control) were, respectively, 154.06, 109.1,
67.3, and 31.1. The data show that AGE–RAGE stress is
2.16 times higher in obese nondiabetic, 3.5 times higher in
diabetic nonobese, and 4.95 times higher in diabetic obese

individuals compared with nondiabetic nonobese controls.
The data suggest that AGE–RAGE stress is 1.6 times higher in
patients with nonobese diabetes comparedwith nondiabetic
obese patients. The data also suggest that obese patientswith
diabetes have the highest AGE–RAGE stress as compared
with controls, obese, and diabetic patients. In conclusion, the
AGE–RAGE stress is markedly elevated in obese patients
compared with the controls.

Mechanism of AGE–RAGE Axis–Induced
Coronary Artery Disease in Obesity

In the previous section, we have described the atherogenic
effects of AGE,30–47 interaction of AGE with RAGE,48–63 and
antiatherogenic effects of sRAGE.64–67 Increases in the serum
levels of AGE and expression of RAGE would produce ath-
erosclerosis in the coronary artery, resulting in CAD. How-
ever, the serum levels of AGE are reduced in obesity70–77 and
hence the chances of development of atherosclerosis in the
coronary artery of obese individuals would be reduced.
However, this does not happen in obesity. Atherosclerosis
develops in obesity.5–8 Expression of RAGE is elevated in
adipose tissue of obese individuals,85 which would increase
the chances of development of atherosclerosis. However,
RAGE expression in mononuclear cells of peripheral blood
of obese individuals has been reported to be unaltered.87 As
described earlier in the section “Serum/Plasma Levels of
sRAGE in Obesity,” the levels of sRAGE and esRAGE are
reduced in obesity, which would increase the chances of
development of atherosclerosis. Decreases in the serum
levels of AGE should have protected the development of
atherosclerosis and CAD in obese individuals. However,
this does not happen in obesity. Obesity is an independent
risk factor for CAD.6–8 Why does this discrepancy exist?
Prasad101 has reported that sRAGE does not serve as a
universal risk marker of disease. AGE–RAGE axis comprises
AGE, RAGE, and sRAGE. Hence, sRAGE alone cannot serve as
risk marker of the disease. As described earlier in the section
“AGE–RAGE Stress,”AGE–RAGE stress,68 which is the ratio of
AGE/sRAGE, indicates tissue damage, initiation and progres-
sion of disease, and its complications. The limited data show
that AGE/sRAGE is elevated in obese individuals.70 Although
the serum levels of AGE and sRAGE are reduced in obese
individuals, the ratio of AGE/sRAGE is elevated.70 The in-
crease in the ratio of AGE/sRAGE suggests that the levels of
AGE are greater than the levels of sRAGE in obese individuals
as compared with those in nonobese individuals. As de-
scribed earlier, increased levels of AGE and RAGE are athero-
genic. Antiatherogenic effects of sRAGE, described in the
section “Antiatherogenic Function of sRAGE and esRAGE,”
will be reduced with low serum/plasma levels of sRAGE in
obesity. Increased levels of AGE–RAGE stress (AGE/sRAGE)
and expression of RAGE, and reduced levels of serum/plasma
sRAGE in obese individuals would produce atherosclerosis in
coronary artery, leading to CAD. Atherogenic effects of
interaction of AGE–RAGE stress with RAGE and reduced
levels of sRAGE are depicted in ►Fig. 1. Interaction of
increased AGE–RAGE stress with upregulated RAGE
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expression would generate ROS, activate NF-κB, and in-
crease the expression and levels of MCP-1, GM-CSF, cell
adhesion molecules, cytokines, and growth factors, leading
to the development of coronary artery atherosclerosis.
Reduced levels of sRAGE will combine with less amount
of AGE and more AGEwill be available to interact with RAGE
to produce ROS, NF-κB, MCP-1, GM-CSF, cell adhesion
molecules, endothelial leukocyte adhesion molecules, cyto-
kines, and growth factors to initiate and maintain the
development of coronary atherosclerosis, leading to CAD.
The role of these biomolecules in the formation of athero-
sclerosis is not being described here. The details of the roles
of these biomolecules in the development of atherosclerosis
have been reported earlier by Prasad102 and Prasad and
Bhanumathy.103

ROS generated by interaction of AGE with RAGE can also
produce atherosclerosis because ROS has been implicated in
the development of atherosclerosis.104,105

Treatment Strategy for Obesity–Induced
Coronary Artery Disease

The treatment strategy for obesity-induced CAD includes
lowering of AGE levels in the body, degradation of AGE in
vivo, prevention of AGE formation, downregulation of RAGE
expression, use of blockers of interaction of AGE with RAGE,
upregulation of AGE expression, exogenous administration
of sRAGE, and use of antioxidants. These treatment strategies

have been described in detail elsewhere by Prasad,15 Prasad
and Tiwari,64 and Prasad and Bhanumathy.103

Perspectives

The available data on AGE–RAGE axis suggest that AGE–
RAGE stress may be involved in the development of obesity-
induced CAD. However, there are other risk factors, including
abnormality in lipid metabolism, insulin resistance, inflam-
mation, endothelial dysfunction, and adipokines imbalance,
which have been implicated in the obesity-induced CAD.13

Adipose tissue comprises two types of fat: white fat (subcu-
taneous and visceral) and brown fat. White adipocytes
preferentially produce good anti-inflammatory adipokines
(IL-1, IL-4, IL-10, IL-13) receptor antagonist and TGF under
healthy condition.106 White adipocytes in obesity, however,
produce bad adipokines (TNF-α, IL-6 angiotensin-II, and
leptin).106 These bad adipokines induce development of
atherosclerosis.107 C-reactive protein levels are elevated in
obesity,108 which would also induce atherosclerosis.109,110

As described earlier in the section “Serum/Plasma and
Tissue Levels of AGE in Obesity,” the serum levels of sRAGE
are reduced, while the levels of AGE are elevated in adipose
tissue.71,81 The significance of this inverse association of AGE
and sRAGE is presently unexplainable.

The treatment strategies for AGE–RAGE stress in obesity-
induced CAD are reasonable. However, this treatment strat-
egy may not be fully effective because there are other risk

Fig. 1 Effects of interaction of elevated AGE–RAGE stress (AGE/sRAGE) with elevated RAGE and reduced sRAGE on the production of atherogenic
factors resulting in coronary artery disease in obese individuals. Interaction of increased AGE–RAGE stress with increased RAGE increases the
generation of ROS (reactive oxygen species), activation of NF-κB (nuclear factor-kappa B), and expression of MCP-1 (monocyte chemoattractant
protein-1), GM-CSF (granulocyte-macrophage colony-stimulating factor), VCAM-1 (vascular cell adhesion molecule-1), ICAM-1 (intercellular
adhesion molecule-1), E-selectin (endothelial-leukocyte adhesion molecule -1), IL-1 (interleukin-1), IL-6, IL-8, TNF-α (tumor necrosis factor -α),
TNF-β, IFN-γ (interferon gamma), IGF-1 (insulin-like growth factor-1), PDGF (platelet-derived growth factor), and TGF-β (transforming growth
factor-β). ", increase, ↓, decrease.
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factors besides AGE–RAGE stress that are involved in the
development of obesity-induced CAD. This treatment strat-
egy would supplement the other treatment protocol for
obesity-induced CAD.

Conclusion

Serum/plasma levels of AGE and sRAGE are reduced, while
AGE–RAGE stress (AGE/sRAGE) levels are elevated in obese
patients. Increased levels of AGE–RAGE stress would induce
development of atherosclerosis in coronary artery, leading to
CAD through increased production of numerous atherogenic
factors. Treatment strategy for AGE–RAGE-induced CAD
should be directed toward reduction in intake of AGE,
prevention of AGE formation, degradation of AGE in vivo,
downregulation of RAGE expression, blockade of binding of
AGE with RAGE, upregulation of expression of sRAGE, and
use of antioxidants.
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