Cholangioscopy: Has It Changed Management?

Sudipta Dhar Chowdhury¹ Rajeeb Jaleel¹

¹Department of Gastroenterology, Christian Medical College, Vellore, India

Abstract

The single operator per oral cholangioscope is a catheter-based system that allows for direct visualization of the bile duct and pancreatic duct. The instrument with its improved imaging technique and larger accessory channel allows for high-quality image acquisition and performance of therapeutic and diagnostic procedures within the bile duct and pancreatic duct. There has been an increase in the range of indications for the use of the cholangioscope. The current indications include management of difficult biliary stones, pancreatic calculi, assessment of indeterminate biliary stricture, pancreatic stricture, intra-ductal papillary mucinous neoplasms, and extractions of proximally migrated stents. The use of laser lithotripsy and electro-hydraulic lithotripsy has improved the management of difficult bile duct stones. Direct visualization of biliary and pancreatic duct strictures is helpful in the diagnosis of indeterminate strictures. In this review, we explore how cholangioscopy has changed management.

Keywords

► bile duct
► biliary stricture
► cholangioscopy
► choledocholithiasis
► pancreatoscopy
► spyglass

Introduction

Direct visualization of the biliary tree has been an area of active interest over the past century. Almost 100 years ago, J. Bakes, a Czecho-Slovakian surgeon described the use of a modified ear speculum with a light source and mirror for examination of the bile duct at surgery.¹ However, it was only after McIver developed a rigid right-angled choledoscope that cholangioscopy gained popularity.² A flexible choledoscope with a channel for irrigation and instrumentation was introduced by Shore et al.³ The improvement in instrumentation allowed for the use of cholangioscope per-cutaneously. However, it was only after the advent of the mother–baby scope in 1976 that cholangioscopy became an important part of an endoscopist’s therapeutic armamentarium.⁴ The mother–baby system consisted of a duodenoscope (the mother) through which a flexible cholangioscope (the baby) could be inserted. The mother–baby cholangioscope went out of favor as the system was fragile, had limited steerability, and the procedure required two endoscopists. With the development of the single operator per-oral cholangioscope system, (SpyGlass, Boston Scientific, Marlborough, MA, USA) cholangioscopy has regained popularity amongst the endoscopists and the areas of its use are gradually increasing.

Single Operator per Oral Cholangioscope: (SpyGlass, Boston Scientific)

This is a catheter-based system that can be operated by a single operator and allows direct visualization of the biliary system and the pancreatic ducts. The first-generation catheter-based single operator per oral cholangioscope the SpyGlass Direct Visualization system also known as the SpyGlass Legacy system was launched in 2007. The first generation SpyGlass cholangioscope was a very popular device and brought cholangioscopy to the main stream. However, it had a few limitations viz. the image quality was sub-optimal,
Cholangioscopy is performed with the duodenoscope positioned at the papilla, the cholangioscope is advanced across the papilla into the bile duct or pancreatic duct. A sphincterotomy or sphincteroplasty is usually performed before insertion of the cholangioscope to improve the ease of scope insertion.

In this review, we will discuss how cholangioscopy has changed the management of patients with biliopancreatic disorders. For this review “cholangioscope” and “pancreatoscope” refers to the single operator per-oral cholangioscopy (SpyGlass System).

Indications for Cholangioscopy

The indications for cholangio-pancreatoscopy are increasing. Currently, the most frequent use of cholangioscopy is in the management of difficult bile duct stones and the evaluation of indeterminate biliary strictures (Table 2).

Difficult Bile Duct Stones

Stones within the biliary tree are a commonly encountered problem and 90% of the stones can be extracted using standard techniques. i.e., using a stone extraction balloon, or a stone extraction basket. However, there can be occasional challenges that make stone extraction using standard techniques difficult. These can be largely grouped into stone characteristics, stone location, and anatomy (Table 3). For stones larger than 15 mm endoscopic papillary dilatation in combination with endoscopic sphincterotomy can facilitate the extraction of stones. However, in situations where the stone size is larger than the bile duct (stone to bile duct diameter ratio > 1.0), the stone is > 20 mm in diameter, the stone is above a stricture, or there is an acute angle of the distal common bile duct (CBD) ≤ 36 degrees, shock wave lithotripsy utilizes shock waves to fragment the stones and this can be applied extracorporeal (extra-corporeal shock wave lithotripsy [ESWL]) or within the bile duct.
Cholangioscopy allows for endoscopic access to the bile duct for direct visualization and fragmentation of stones. Cholangioscopy, assisted stone extraction is usually performed by utilizing shock waves delivered using laser lithotripsy or electrohydraulic lithotripsy.

Laser Lithotripsy
Laser light is monochromatic (i.e., of one wavelength), directional and coherent. These properties of laser light allow for its application in medical procedures. Pulsed solid-state lasers (holmium: YAG) are used for lithotripsy. Pulsed lasers can generate very high power for very short periods and therefore decrease the risk of injury. Laser light creates a plasma (collection of electrons and ions) at the surface of the stone and adjacent fluid. Expansion of the plasma creates a high-energy shock wave that fractures the stone (Video 1). Laser machines allow for the modulation of pulse energy (Joule) and pulse frequency (Hertz) and thereby the power (Watt) of the laser machine, which is a product of energy (J) and frequency (Hz). The laser fibers are usually 4 m long and vary in diameter (200, 365, 550, or 1000 micrometre). The commonly used fiber diameter is 365 micro M. Laser lithotripsy (LL) has been compared with conventional therapy (mechanical lithotripsy, EPLBD) and surgery. With LL, successful stone clearance can be achieved in >90% of patients (Table 4).

Video 1

Electrohydraulic Lithotripsy
The electrohydraulic lithotripsy (EHL) probe is a bipolar probe that is connected to a charge generator. With the probe tip positioned 1 to 2 mm from the surface of the stone, the application of charge to the bipolar probe in short pulses creates sparks that induce expansion and contraction of surrounding fluid resulting in an oscillatory shock wave. This shock wave fragments the stone. Continuous saline irrigation is required during EHL for shock wave

| Table 4 Randomized controlled trial comparing laser with conventional techniques |
|-----------------------------------|-----------------|----------------|----------|-----------|----------------|
| Author, year | Study design | Population | Intervention | Comparator | Number (ratio) | Outcome |
| Li et al, 2021¹⁰ | RCT: Non inferiority | Large CBD stone ≥2 cm | LL | LCBDE | 157 (1:1) | LL not inferior. First session clearance lower in LL |
| Bang et al, 2020¹¹ | RCT | Difficult bile duct stones – failed retrieval with balloon or basket | LL | LBS | 66 (1:1) | Laser: 93.9, LBS: 72.7 p = 0.021 |
| Ansuwatcharakon et al, 2019¹² | RCT | Large bile duct stones that were either not amenable/failed EPLBD | LL | Mechanical lithotripsy | 32 (1:1) | Stone clearance 100% vs 63% p < 0.01 (favoring laser lithotripsy) |
| Buxbaum et al, 2018¹³ | RCT | Patients with bile duct stones >1 cm in diameter | LL | Conventional (mechanical lithotripsy and EPLBD) | 60 (2:1) | Laser: 93, Conventional: 67% p = 0.009 |

Abbreviations: EPLBD, endoscopic papillary large balloon dilatation; LBS, large balloon sphincteroplasty; LCBDE, laparoscopic common bile duct exploration; LL, laser lithotripsy.

| Table 5 Electrohydraulic lithotripsy (EHL) for biliary stones |
|-----------------------------------|-----------------|----------------|----------|-----------|----------------|
| Author, Year | Study design | Population | Intervention | Number | Outcome |
| Binmoller et al, 1992¹⁴ | Prospective observational study | Patients with extrahepatic stones | EHL | 108 difficult stones: EHL done in 65 | Stone clearance in 64 (98.5%) |
| Kamiyama et al, 2018¹⁵ | Retrospective study | Difficult bile duct stone | Cholangioscope assisted: 34 Percutaneous: 8 | 42 | Stone clearance 41 (98%) |
| Minami et al, 2021¹⁶ | Observational study | Difficult biliary stone (intrahepatic, CBD and CD) | Cholangioscope assisted | EHL-88 LL-2 | Complete stone removal (92.2%) |

Abbreviations: CBD, common bile duct; CD, cystic duct.
transmission. EHL has been in use for lithotripsy for last couple of decades. More than 90% of the stones can be successfully cleared with EHL (Table 5). In a meta-analysis of 32 studies in which LL was compared with EHL, LL was found to have a higher rate of stone clearance (95.1% vs. 88.4%). Post-procedural complications appeared to be lower in patients who underwent LL compared with EHL (8.4% vs. 13.8%).

Pancreatic Calculi
Calcifications are a frequent finding in patients with chronic pancreatitis. Intraductal lithotripsy has been explored as a means of treating calculi within the main pancreatic duct. In a meta-analysis of 15 studies including 370 patients, 237 EHL and 136 LL procedures were performed. The clinical success for EHL was 91.6% and that for LL was 86.6%. Adverse events occurred in 12%. The role of intraductal lithotripsy in management of patients with chronic pancreatitis is unclear. Further studies with a head-to-head comparison between ESWL and intraductal lithotripsy may help better define its role.

Indeterminate Biliary Stricture
Biliary stricture is considered indeterminate when basic work-up, transabdominal imaging, and ERCP with cytologic brushing are non-diagnostic. Cholangioscopy by its ability to directly visualize the bile duct offers a distinct advantage of visualizing the stricture and obtaining a tissue sample from the stricture under vision (Fig. 1). Macroscopic features that suggest that the stricture may be neoplastic include, tortuous dilated vessel, papillary projections, vegetative mass, irregular papillary or granular lesions, ulceration, friability, and easy bleeding. Several attempts have been made to classify lesions as neoplastic and non-neoplastic based on macroscopic features. Robles-Medranda et al made the first attempt at developing a classification for biliary lesions. Lesions with irregular or spider vascularity, irregular ulcerations, infiltrative patterns, or honeycomb patterns were classified as neoplastic. The Monaco classification is a recent attempt at developing a consensus definition for visual interpretation of the biliary stricture. Amongst the visual anomalies observed in a stricture the presence of ulceration and papillary projections were found to be highly associated with a diagnosis of malignancy. El Bacha et al identified three features that were diagnostic of malignant lesion viz. villous pattern, irregular vessels, and reddish aspect. The Mendoza classification is another consensus-based classification system aimed at macroscopic identification of neoplastic lesions. Three criteria viz. friability, tortuous dilated vessels, and raised intra-ductal lesions had the highest intraobserver agreement. In a meta-analyses of six studies, the pooled sensitivity, specificity, and diagnostic odds ratio for visual interpretation of indeterminate biliary stricture at cholangioscopy was 94% (95% confidence interval [CI]: 89–97), 95% (95%CI: 90–98), and 308.83 (95%CI: 106.46–872.82), respectively. In addition to visualization of the lesion, the cholangioscopes also allow for obtaining biopsy specimens from the stricture. In a meta-analysis of 11 studies that included 356 patients, the pooled sensitivity, pooled specificity, and odds ratio for visually directed biopsy in indeterminate biliary stricture was 0.74 (95% CI: 0.67–0.80), 0.98 (95% CI: 0.95–1.00), and 63.18 (95% CI: 26.79–158.61), respectively. The overall sensitivity of cholangioscope assisted biopsy appears to be lower than the visual impression. This could be possibly related to lax criteria used for macroscopic identification of neoplastic lesion and the poor quality of tissue obtained at cholangioscopy with the older generation SpyBite forceps. Recently, the SpyBite Max biopsy forceps has been introduced. In this forceps, the internal spike has been removed and the cups have front and side serrated teeth profile along with two long fenestrated holes to allow grasp of a larger tissue sample. The change in the design of the forceps will probably help improve the sensitivity of cholangioscope-assisted tissue acquisition.

Lesions in Pancreatic Duct
The utility of the cholangioscope is now being explored for the management of lesions in the pancreatic duct (pancreatoscopy). Pancreatic duct strictures and dilatations can occasionally pose diagnostic challenges for clinicians. A 13-year study from the United States explored the role of per oral pancreatoscopy in differentiating malignant and benign lesions of the pancreatic duct. A total of 102 pancreatoscopy procedures were done in 79 patients. The sensitivity of detecting a neoplastic lesion based on visual impression was 87% and this improved to 91% with the addition of biopsy under direct vision. Adverse events that were predominantly in the form of post-procedural abdominal pain were reported in 12% of the patients. Pancreatoscopy has also been found to be of help in intra-ductal papillary mucinous neoplasms (IPMN). Using a mother–baby system, Hara et al classified the findings in patients with IPMN into five groups, viz. granular type, fish-egg-like type without vascular images, fish egg-like type with vascular images, villous type, and vegetative type. In a retrospective multicenter study of patients with main duct IPMN, 42% of patients had findings at pancreatoscopy that were not seen on cross-sectional imaging. Pancreatoscopy dictated the type of surgery in 77% of patients with diffusely dilated main pancreatic duct (> 10 mm). The authors concluded that pancreatoscopy should be included in the diagnostic algorithm of main duct IPMN in patients with a dilated main pancreatic duct.

Extraction of Migrated Stents
Plastic stents are commonly deployed in both pancreatic and biliary ducts. Stents at both these locations have a risk of
proximal and distal migration. Distally migrated stents can produce bowel obstruction, perforation, or recurrent cholangitis. Proximal migration of stents can result in biliary pain, cholangitis, formation of stricture or stone around the stent. The risk of proximal stent migration for both biliary and pancreatic stent is ~5%. Several techniques and instruments have been described to extracted the proximally migrated stents including rat tooth forceps, snares, stone extraction baskets, Soehendra’s stent extraction device. However, at times the above techniques are not successful especially in proximally migrated pancreatic duct stents. In our center, we have successfully used the SpyBite forceps with SpyGlass system for the extraction of proximally migrated pancreatic stents, by holding the stent tip (Fig. 2). Recently, SpyGlass Retrieval snare with a snare diameter of 9 mm has been introduced for the extraction of stents.

Future Directions

In this review, we have attempted to present the current applications of cholangioscope and how it has changed management. In the near future, we foresee a wider range of applications. With better image processing and maneuverability, the need for fluoroscopy will probably diminish. A recent development in the visual interpretation of indeterminate stricture visualized at cholangioscopy is the introduction of artificial intelligence. Mascharanas et al developed a deep learning algorithm that can accurately differentiate malignant from non-malignant biliary stricture. Radiofrequency ablation (RFA) of unresectable cholangiocarcinomas has been shown to improve stent patency and overall survival. There is an emerging role of cholangioscopes in the pre-procedure and post-procedure evaluation of the tumor after application of RFA. With improvement in the present accessories such as a larger cup of the SpyBite forceps and durable baskets and snares the range of therapeutic applications of cholangioscope is set to widen.

Conflict of Interest
None declared.

References

2. McIver MA. An instrument for visualizing the interior of the common duct at operation. Surgery 1941;9:112–114
5. Erosho G, Teshen O, Ozutemiz AO, Günsar F. Biliary sphincterotomy plus dilation with a large balloon for bile duct stones that are difficult to extract. Gastrointest Endosc 2003;57(02):156–159

Fig. 2 (A) MRCP: Dilated main pancreatic duct with proximally migrated stent within the MPD. (B) Pancreateoscopy: The stent tip is held by SpyBite forceps and extracted from the MPD through the major papilla. (C) Extracted plastic stent.