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Introduction

Tuberculosis (TB) continues to be a highly contagious public
health threat, caused by bacillusMycobacterium tuberculosis
(MTB),1 and has been ranked above human immunodeficien-
cy virus (HIV)/acquired immunodeficiency syndrome since
2007.2 About 10 million cases were recorded in the TB
account, and 1.2 million who died were among HIV-infected
people including 208,000 deaths of HIV-positive people.2

India is leading followed by Indonesia and China, among
the eight countries, contributing to two-thirds of the total

global TB burden.2 The disease remains a matter of grave
concern as the graph of TB infection continues to incline in
spite of highly efficacious treatment available since decades.
Althoughwith rapid diagnostic methods and treatment with
the combination of drug regimens for over 50 years, the
disease has evolved to high mortality and treatment failure.
Drug response varies from individual to individual suffering
from the same disease and on the same treatment plan, and
some may experience adverse drug reactions (ADR).3 Non-
genetic factors such as age, gender, nutritional status, gener-
al medical condition (e.g., hepatic and renal physiology),
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Abstract Tuberculosis (TB) continues to be a major infectious disease affecting individuals
worldwide. Current TB treatment strategy recommends the standard short-course
chemotherapy regimen containing first-line drug, i.e., isoniazid, rifampicin, pyrazina-
mide, and ethambutol to treat patients suffering from drug-susceptible TB. Although
Mycobacterium tuberculosis, the causing agent, is susceptible to drugs, some patients
do not respond to the treatment or treatment may result in serious adverse reactions.
Many studies revealed that anti-TB drug-related toxicity is associated with genetic
variations, and these variations may also influence attaining maximum drug concen-
tration. Thus, inter-individual diversities play a characteristic role by influencing the
genes involved in drugmetabolism pathways. The development of pharmacogenomics
could bring a revolution in the field of treatment, and the understanding of germline
variants may give rise to optimized targeted treatments and refine the response to
standard therapy. In this review, we briefly introduced the field of pharmacogenomics
with the evolution in genetics and discussed the pharmacogenetic impact of genetic
variations on genes involved in the activities, such as anti-TB drug transportation,
metabolism, and gene regulation.
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lifestyle (diet, alcohol abuse, and smoking), concomitant
therapy, or the presence of co-morbidity have been previ-
ously attributed to differences in the risk–benefit ratio
among patients taking the same drug. Aside from these
considerations, changes in patient genetic make-up are
now understood to have a significant impact on treatment
response.4 These variations among individuals are due to
several factors including different allele frequency distribu-
tions of single nucleotide polymorphisms (SNPs) that have a
functional impact on genes association with drug response.5

Hence, absorption, distribution, metabolism and excretion,
pharmacokinetics (PK), and pharmacodynamics of drugs are
influenced by a genetic variation which affects drug efficacy
and drug-induced toxicity and, thus, leads to ADRs or thera-
peutic failure. All these factors due to variations are validated
by genotypes, and therefore, pharmacogenetic implementa-
tion in the clinical setting has become an important aspect of
targeted therapy.6 Pharmacogenomics research has a long-
term purpose of the development of individualized medica-
tion based on the patient’s genetic sequence to achieve
maximum response and avoid undesirable drug responses.7

Isoniazid (INH), rifampicin (RF), pyrazinamide, and eth-
ambutol are the first-line anti-TB drugs currently recom-
mended by World Health Organization.2 INH and RF are the
two key drugs used for the treatment of TB. Resistance
offered to these drugs by the mycobacteria or adverse reac-
tion caused by the drugs results in treatment prolongation
from 6 to 9 months8 or sometimes treatment has to be
stopped due to the excessive damaged caused by the adverse
reaction.9 Efficacy and early antibacterial activity of the
drugs are related to the dose or PK; therefore, the variation
in the PKof INHand RF influences the clinical consequence of
TB treatment.9 With beneficial effects, there are various

adverse effects especially peripheral neuropathy and hepa-
totoxicity induced by INH therapies.10,11 We have outlined
the emerging role of pharmacogenomics in this review and
the way in which valuable tools for the determination of
inter-individual variation are found. In this review, we focus
on genes involved in RF and INH transport and metabolism,
as well as the genes governing the transcription of trans-
porter and metabolizing genes.

Genetics and Individualized Treatment
(Personalized Medicine)

The idea of individualized medicine is an appealing concept
for the future of treatment. It is divine to employ molecular
research data to categorize disease and its susceptibility, aid
the development and rationale of new therapeutic regi-
men,12 and help in patient treatment with greater specificity
and potency with fewer side effects13 (►Fig. 1).

With the advancement in technology and development in
biomedical sciences, research findings have unfolded several
predictive sciences. Pharmacogenetics and pharmacoge-
nomics are two among new predictive sciences that have
emerged from the knowledge discovered in biomedical
research. The research in these fields could promise a crucial
step toward personalized treatment.14 It is necessary to
understand the disposition and fate of drugs, i.e., PK and
pharmacodynamics of drugs which include therapeutic out-
comes with adverse effects. The PK and pharmacodynamics
of drugs are determined by complicated processes involving
the majority of proteins coded by a variety of genes, which
determine drug transport, metabolism, potency, and drug
detoxification. Variations in the coding region may induce
amino acid substitution at the specific location of protein

Fig. 1 Concept of genotyping-based targeted/individualized therapy.
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which consequently alters protein function. If the variation is
found in the regulatory region, it may affect transcription
and translational mechanisms with gene product modula-
tion (mRNA and proteins) and their expression levels may
differ.4,15 Variations in DNA sequence in population at or
above 1% allelic frequency are termed as polymorphism,
whereas variations with lower frequencies are defined as
mutations.Metabolic activities or drug affinity to its receptor
and efficacy depends on enzymes coded by mutated or
polymorphic genes, which can alter pharmacological re-
sponse in individuals or in some ethnic groups, within
population. Single-nucleotide polymorphisms (SNPs) are a
type of genetic variants that occur mostly as a result of the
substitution of a single base pair and they are commonly
known.4,15 Studies revealed that variability among individ-
uals in PK vulnerability to drug accounts for some unfortu-
nate outcomes, also in those patients who do not miss doses.
This has challenged the conventional concept that therapeu-
tic failure, reoccurrence, and the emergence of antimicrobial
resistance are primarily due to poor adherence.16

The severe and ubiquitous challenge in the TB manage-
ment of patients is PK heterogeneity. SLCO1B 1, ABCB1, PXR,
CAR, and CES genetic variations have drawn scientific atten-
tion because they have an impact on a broad spectrum of
medications’ PK.17 Genetic changes in the acetylation status
are linked to marked inter-individual variation in circulating
INH concentration and clearance after medication. The dif-
ferences in INH inactivation and elimination rates in various
(fast and slow) acetylation phenotypes are principally attrib-
utable to differences in the rate of INH acetylation in the liver
and small intestine by a genetically regulated polymorphic
N-acetyltransferase (NAT) enzyme.18

Rifampicin

RF proved to be a cornerstone TB treatment by shortening
the period of anti-tubercular therapy (ATT) from 18 to
9 months and enhanced recovery rates when it was intro-
duced in combinational chemotherapy for TB during
1960s.19,20 RF diffuses freely in the tissues, living cells, and
bacteria which make it easily available against the intracel-
lular pathogens like MTB. It exhibits its anti-mycobacterial
activity by arresting the RNA synthesis from MTB’s DNA
through the β-subunit of RNA polymerase (RNA pol).21 RF
action drives through the rpo β gene which codes for the β-
subunit of RNA pol, and mutation in the rpo β gene is the
reason behind the development of more than 95% of resis-
tance against RF. Majormutation hotspots are found in 81bp-
RF resistance-determining region (RRDR). Commonly known
mutated codons in RRDR are rpo β 531, rpo β 526, and rpo β
516.22 Its antibacterial properties and resistance develop-
ment are influenced by drug bioavailability (concentration),
and higher doses of 1,200mg or more daily may be effec-
tive.23As a result, increasing the dose of RF from the standard
dosing based on weight may aid in achieving desired plasma
PK and pharmacodynamics.24 Few recent studies have
shown that the high dosage of RF could result in better
therapy outcomes in patients.25,26 Many studies reported

a correlation between various genetic variants and signifi-
cant changes in RF plasma levels in TB patients.27 RF hepato-
cellular uptake is typically performed by organic anion-
transporting polypeptide 1B1 (OATP1B1)28 and metabolism
is catalyzed by hepatic β esterases and arylacetamide deace-
tylase29 to its activemetabolic form, 25-desacetylrifampicin,
and then, it is excreted via bile and renal routes after first
passmetabolism.30OATP1B1 ismain among themajor influx
transporter proteins, a 691 amino acid protein coded by
solute carrier (SLC) organic anion transporter family mem-
ber 1B1 (SLCO1B1)31 gene that predominantly presents at the
basolateral membrane of hepatocytes32 and modulates the
hepatic uptake of drug from bloodstream.33 OATP1B1 trans-
porter protein has a strong affinity for RF.34 Membrane drug
transporter superfamilies include SLC and adenosine tri-
phosphate (ATP)-binding cassette (ABC) transporters.32

Around 400 transporters in membrane belong to SLC and
ABC superfamily, with approximately 32 of them being
clinically linked and potentially important drivers of drug
PK and individual drug responses.35 The sinusoidal inflow
transporter SLCO1B1 and the efflux transporter ABCB1 in-
fluence RF distribution36 while absorption in liver and bili-
ary excretion.37 Fifteen exons and 190 known
polymorphisms having minor allele of more than 5% fre-
quency are found in the SLCO1B1 gene.38 rs4149056 625T>C
and rs2306283 492A>G are two well-characterized varia-
tion in the SLCO1B1 gene39 (►Fig. 2).

According to studies, a common single nucleotide variant
(rs4149056 c.521T>C p. V174A) reduces SLCO1B1 expres-
sion, resulting in lower OATP1B1 uptake/transport activity
and higher plasma levels.40 Allegra et al reported high RF
plasma concentration in TB patients with the SLCO1B1
rs4149056 variant, and analysis by multivariate linear re-
gression also suggested that the SLCO1B1 rs4149056 variant
can be considered as a positive predictive marker for raised
RF concentration.41 Weiner et al observed decreased RF
exposure in patients who had SLCO1B1 rs11045819 (c.463C
>A p. Pro155Thr) polymorphism.42 When compared with
patients with the wild-type allele (CC), patients having
rs11045819 variant allele (CA) in SLCO1B1 showed 42%
low RF exposure (25.6 µg�h/mL), 34% reduced peak concen-
tration (5 µg/L), and 63% detectable oral clearance (22 L/h).42

The functional effects of variation rs2306283 (c.388A>G p.
Asn130Asp) have been observed to be inconsistent.40,43 A
study by Dompreh et al observed that rs2306283 variant in
SLCO1B1 was found to be related to decreased RF concentra-
tion in pediatric TB patients. In paired analysis, patients
having SLCO1B1 homozygous variation (AA) exhibited sig-
nificantly lesser RF concentration than patients having wild
genotype (GG).44 In the African population, there is an
elevation in the prevalence of the SLCO1B1 rs4149032 poly-
morphism in intron 2 haplotype tagging SNP (tSNP) which is
associated with lower RF exposure.45 Patients with hetero-
zygous and homozygous mutations had considerably lower
RF bioavailability, with 18 and 28% declines in RF bioavail-
ability, respectively.46

RF is a substrate of P-glycoprotein (Pgp) efflux pump.47

Pgp is a multi-domain integer membrane protein that uses
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ATP energy to move solutes/ions across the membranes in
eukaryotes (efflux pump).48–50 Pgp is the ABCB1 transporter
protein constituting of 1,280 amino acids that is encoded by
the ABC gene.51 The ABCB1 gene is present on chromosome
number 7 and has 29 exons in a 251.3-kb genomic area. The
most prevalent SNPs in this ABCB1 gene are rs1128503,
rs2032582, and rs1045642.52 rs1128503 and rs1045642
variants are synonymous, while missense mutation is found
in rs2032582.53 There was no statistically significant corre-
lation between ABCB1 variants and RF PK in any of the
studies. However, only few of ABCB1 variants were studied
in relation to RF exposures. Rare ABCB1mutations that could
affect medication PK have yet to be thoroughly investigated
in terms of their functional consequences.52 The transcrip-
tion of SLCO1B1 and ABCB1 genes is regulated by PXR and
CAR genes. PXR and CAR are nuclear receptors in the group I
family that regulate a variety of transcriptions, including
those of medicinal enzymes and drug transporter genes.52

Few research studies have looked into the likelihood of SNPs
in these genes being linked to RF plasma levels. The PXR gene
has rs2472677 and rs1523130 variations in the intron 1 and
50UTR regions, respectively. These areas illustrate the tran-
scription factor binding sites of regulatory regions of PXR.53

rs2307424 variant is due to synonymousmutation in the CAR
gene (c.540 C> T).54 None of the variants have found to be
associated with the RF plasma level and its exposure.

B-esterase is the enzyme that converts RF to 25-desacetylri-
fampin.55 The carboxylesterase (CES), acetylcholinesterase, and
butyrylcholinesterase enzymes are all members of the B-ester-
ase family. CES is a broad substrate-specific enzyme that hydro-
lyzes ester, thioester, amide, and carbamate bonds, which is
implicated in themetabolismof various endobiotic and xenobi-
otic substances. The two primary isoenzymes of human CES,
mainly expressed in the liver, are CES1 and CES2, which are
coded by the CES1 and CES2 genes, respectively.56 Several
genetic variants of CES1 and CES2 have been associated with a
significant difference in drug therapy responses over the past
decades. As a result, comparing the PKof substratemedicines to
genetic variations in these genes becomes important.57 Both

CES1 and CES2 genes lie on chromosome 16 and have 14 and 12
exons, respectively.58 Sloan et al found that rs12149368 muta-
tion in the exon 1 (5′UTR) region in CES1 gene has no effect on
plasma RF concentration.16 Song et al observed 10 SNPs: the
promoter region variants c-2548C> T and c-2263A>G, as well
as c.269–965A>G, c.474–152T>C, c.615þ120G>A, c.1612
þ136G>A,and c.1613–87G>Avariants in intronic regionand
c.1872�69A>G, c.1872�302_304delGAA, c.1872�445C>G var-
iants in 3′UTR within the RF level. The CES2 c.-22263A>G
variationwas linked toelevatedconcentrationofRF inplasma in
TB patients. Plasma RF concentrations in homozygous major,
heterozygous, and homozygous minor allele were 8.9�2.9,
10.5�3.1, and 13.9�7.4mg/L, respectively, in homozygous
major allele, heterozygous, and homozygous carrying minor
allele. TheshiftofG fromAin theCES2 c.-22263A>Gvarianthas
been found linked with continuous fall in activity of luciferase,
this may lead to low metabolism and higher plasma RF levels,
according to the study.59 Dompreh et al, on the contrary, found
no differences in exposures of RF with CES2 rs3759994
variation.9

Isoniazid

Due to lowmolecular weight and highwater solubility,18 INH
can be easily absorbed from the gastrointestinal tract (GIT)
4,60; thus, the peak plasma concentration reaches in 1 to
3hours of drug intake.61 INH reaches all tissues62 and body
fluids including cerebrospinal fluid, saliva, pleural, and peri-
toneal fluid63 and to lungs after absorption from GIT.64,65

INH also attains peak concentration in the breast milk of
lactating mother within 1 hour of drug administration.66

INHmetabolismmainly follows enzyme-dependent path-
ways such as acetylation through NAT2 enzyme and hydro-
lysis catalyzed by acyl amidase.67 INH-NADþ adducts is also
formed by the combined action of human neutrophil mye-
loperoxidase and catalase-peroxidase (KAT G) of MTB.68,69

INH is initially metabolized by a non-inducible hepatic
and intestinal enzyme known as the NAT type 2 (NAT2)67

which is coded by highly polymorphic gene called NAT 2

Fig. 2 Diagram showing the uptake, transformation, and efflux of rifampicin in hepatocytes.
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gene.70 INH is acetylated to acetylisoniazid by NAT2 enzyme
2, and it is also hydrolyzed to form isonicotinic acid (INA) and
hydrazine (Hz) through the amidase enzyme. Acetylisoniazid
can also be hydrolyzed to produce INA and acetylhydrazine
(AcHz); furthermore, Hz can be converted into AcHz and
diacetylhydrazine via acetylation catalyzed by NAT2 en-
zyme.71 Hz and AcHz are supposed to be converted into
reactive metabolites through oxidation and may be respon-
sible for the INH hepatotoxicity which can be mediated by
microsomal P450s like CYP2 E.67,72

Arylamine NAT (EC2.3.1.5) is the cytosolic enzyme of
30 kDa found in almost every species, both in prokaryotes
and in eukaryotes.73 It is present in multiple isoenzymes
forms,74 and its two distinct isoforms, NAT1 and NAT2, with
overlapping substrate specificities have been studied in
humans.75 Biotransformations of xenobiotics are mainly
catalyzed by NAT1 and NAT2.74 NAT2 expression is confined
to liver andGIT, whereas NAT1 is expressed in themajority of
the tissues along with endocrine tissues, blood cells, neural
tissues, aswell as in liver andGIT.76 Being a transferase group
of enzyme, it inactivates the arylamine and Hz-based xeno-
biotics by transferring acetyl group of acetyl CoA to the
terminal nitrogen atom of the xenobiotics.18 Hence, it is
accountable for Hz drug acetylation and many carcinogenic
aromatic amines along with endogenous molecules such as
serotonin.67

NAT1 enzyme is limited to few specific substrates (p-
aminobenzoic acid), whereas NAT2 enzymes76 play a crucial
role in the metabolism of a wide variety of drugs like
dapsone, sulfadoxine, INH, procainamide, and hydralazine
along with chemicals which are present in the diet.77 NAT1
and NAT2 genes encode NAT1 and NAT2 enzymes, respec-
tively.78 The NAT2 is autosomal dominant and intronless
having a single open reading frame of 870 base pairs, located
on chromosome 8p22. Variations in NAT2 result in slow,
intermediate, or fast acetylation phenotypes with broad
inter-ethnic groups. NAT2 confer slow, intermediate, or
fast acetylation phenotypes with broad interethnic varia-
tions. There are 53 NAT2 alleles presently known, and each
allelic variant exhibits the combination of one, two, three, or
four nucleotide alteration. There are seven missense muta-
tions (G191A, T341C, A434C, G590A, A830G, A845C, and
G857A) and four silent mutations (T111C, C282T, C481T,
and C759A) within the coding region.5 The NAT2�4 is a wild-
type allele, does not have any nucleotide substitution, and is
known to be associated with the fast acetylation phenotype.
This acetylation phenotype can be predicted by genotyping
with 95% accuracy.

Considering genetic characteristics of NAT2 enzymes, the
ability of drug and exogenous compound acetylation and
inter-individual variation among the population is widely
related.79 As NAT2 enzyme is a dominant catalyzer in INH
biotransformation (formation of AcINH), bio-activation (for-
mation of AcHz) and detoxification (formation of DiAcHZ),
due to different allelic distributions of NAT2 gene, results in
variation in the acetylation profile of drugs in the same
population.67,70 The degree of acetylation has been associat-
ed with a higher risk of INH-induced hepatotoxicity in

various studies. There are three different phenotypic acety-
lation profiles based on SNPs in the exon of the NAT2 gene.
Individuals with slow NAT2 acetylation allele have a low
acetylation rate, resulting in a higher plasma concentration
of the parent drug and possibly better efficacy. However,
individuals with slow acetylation may experience adverse
effects due to the accumulation of toxic metabolites such as
AcHz during the ongoing metabolism of INH and toxic
metabaolites contributing to hepatitis threat. Fast acetyla-
tion causes low plasma drug concentrations, making them
less toxic and also less effective, while intermediate acetyla-
tion leads to in-between results.80 Alleles of slow acetylation
have been found to be associated with increased risk of INH
hepatotoxicity in numerous clinical investigations.67 Indi-
vidualswith slowacetylation had higher plasma levels of INH
and AcHz than those with fast acetylation. According to
Donald et al, in slow acetylation of INH, 3mg/kg dose is
sufficient to attain the expected therapeutic objectives of
anti-TB treatment, but in the case of fast acetylation, a
6mg/kg of dose is required to provide adequate bactericidal
activity.81

Conclusion

The genetic and molecular research has proved to be a
cornerstone in personalized medicine and is indicative of
its expanding importance in the field of health care. Hetero-
geneous drug response with anti-tubercular drug therapy is
a severe problem in TB patients. So, here we emphasized the
genetic association with the PK of ATT drug. Genetic poly-
morphism in drug transporter genes, regulatory genes like
SLCO1B, ABCB1, PXR, and CAR and drug-metabolizing genes
such as CES and NAT2 which drive the response, has been
found to be of keen interest to rule out disease predisposi-
tion. By implementing genotyping assays prior to treatment
administration, clinicians could better determine the dose
which could be the main prospect of precision medicine.
Additional studies are required to gain the core knowledge of
drug fate association with genetic variations within the
population. With advances in knowledge and findings, phar-
macogenetics and pharmacogenomics will have a greater
impact on drug research and development, clinical trials, and
clinical practice.
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