Semin Liver Dis 2022; 42(02): 212-224
DOI: 10.1055/s-0042-1744143
Review Article

Liver Immunology, Immunotherapy, and Liver Cancers: Time for a Rethink?

Hailey K. Carroll
1   Department of Medical Oncology, The Mater Hospital, Dublin, Ireland
,
Austin G. Duffy
1   Department of Medical Oncology, The Mater Hospital, Dublin, Ireland
,
Cliona O'Farrelly
2   School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
3   School of Medicine, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
› Author Affiliations


Abstract

The complex immune system of the liver has a major role in tumor surveillance, but also partly explains why current immune therapies are poorly effective against liver cancers. Known primarily for its tolerogenic capacity, the hepatic immune repertoire also comprises diverse populations of armored immune cells with tumor surveillant roles. In healthy people, these work together to successfully identify malignant cells and prevent their proliferation, thus halting tumor formation. When frontline hepatic immune surveillance systems fail, compromised hepatic immunity, driven by obesity, infection, or other pathological factors, allows primary or secondary liver cancers to develop. Tumor growth promotes the normal tolerogenic immunological milieu of the liver, perhaps explaining why current immunotherapies fail to work. This review explores the complex local liver immune system with the hope of identifying potential therapeutic targets needed to best overcome immunological barriers in the liver to create an environment no longer hostile to immunotherapy for the treatment of liver cancer.



Publication History

Article published online:
09 March 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Akinyemiju T, Abera S, Ahmed M. et al; Global Burden of Disease Liver Cancer Collaboration. The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level: results from the global burden of disease study 2015. JAMA Oncol 2017; 3 (12) 1683-1691
  • 2 Engstrand J, Nilsson H, Strömberg C, Jonas E, Freedman J. Colorectal cancer liver metastases - a population-based study on incidence, management and survival. BMC Cancer 2018; 18 (01) 78
  • 3 Chow FC, Chok KS. Colorectal liver metastases: an update on multidisciplinary approach. World J Hepatol 2019; 11 (02) 150-172
  • 4 Wang S, Feng Y, Swinnen J, Oyen R, Li Y, Ni Y. Incidence and prognosis of liver metastasis at diagnosis: a pan-cancer population-based study. Am J Cancer Res 2020; 10 (05) 1477-1517
  • 5 Yu J, Green MD, Li S. et al. Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination. Nat Med 2021; 27 (01) 152-164
  • 6 Dahiya DS, Kichloo A, Singh J, Albosta M, Lekkala M. Current immunotherapy in gastrointestinal malignancies A Review. J Investig Med 2021; 69 (03) 689-696
  • 7 Brandl K, Kumar V, Eckmann L. Gut-liver axis at the frontier of host-microbial interactions. Am J Physiol Gastrointest Liver Physiol 2017; 312 (05) G413-G419
  • 8 Piñeiro Fernández J, Luddy KA, Harmon C, O'Farrelly C. Hepatic tumor microenvironments and effects on NK cell phenotype and function. Int J Mol Sci 2019; 20 (17) 20
  • 9 Robinson MW, Harmon C, O'Farrelly C. Liver immunology and its role in inflammation and homeostasis. Cell Mol Immunol 2016; 13 (03) 267-276
  • 10 Di Ciaula A, Baj J, Garruti G. et al. Liver steatosis, gut-liver axis, microbiome and environmental factors. A never-ending bidirectional cross-talk. J Clin Med 2020; 9 (08) 9
  • 11 Mikulak J, Bruni E, Oriolo F, Di Vito C, Mavilio D. Hepatic natural killer cells: organ-specific sentinels of liver immune homeostasis and physiopathology. Front Immunol 2019; 10: 946
  • 12 Shin EC, Sung PS, Park SH. Immune responses and immunopathology in acute and chronic viral hepatitis. Nat Rev Immunol 2016; 16 (08) 509-523
  • 13 Kubes P, Jenne C. Immune responses in the liver. Annu Rev Immunol 2018; 36: 247-277
  • 14 Shetty S, Lalor PF, Adams DH. Liver sinusoidal endothelial cells - gatekeepers of hepatic immunity. Nat Rev Gastroenterol Hepatol 2018; 15 (09) 555-567
  • 15 Ficht X, Iannacone M. Immune surveillance of the liver by T cells. Sci Immunol 2020; 5 (51) 5
  • 16 Ahmed O, Robinson MW, O'Farrelly C. Inflammatory processes in the liver: divergent roles in homeostasis and pathology. Cell Mol Immunol 2021; 18 (06) 1375-1386
  • 17 Ma Y, Li X, Kuang E. Viral evasion of natural killer cell activation. Viruses 2016; 8 (04) 95
  • 18 Harmon C, Robinson MW, Hand F. et al. Lactate-mediated acidification of tumor microenvironment induces apoptosis of liver-resident NK cells in colorectal liver metastasis. Cancer Immunol Res 2019; 7 (02) 335-346
  • 19 Uzhachenko RV, Shanker A. CD8+ T lymphocyte and NK cell network: circuitry in the cytotoxic domain of immunity. Front Immunol 2019; 10: 1906
  • 20 Provine NM, Klenerman P. MAIT cells in health and disease. Annu Rev Immunol 2020; 38: 203-228
  • 21 Cui J, Shin T, Kawano T. et al. Requirement for Valpha14 NKT cells in IL-12-mediated rejection of tumors. Science 1997; 278 (5343): 1623-1626
  • 22 Crosby CM, Kronenberg M. Tissue-specific functions of invariant natural killer T cells. Nat Rev Immunol 2018; 18 (09) 559-574
  • 23 Chien YH, Meyer C, Bonneville M. γδ T cells: first line of defense and beyond. Annu Rev Immunol 2014; 32: 121-155
  • 24 Rajoriya N, Fergusson JR, Leithead JA, Klenerman P. Gamma delta T-lymphocytes in hepatitis C and chronic liver disease. Front Immunol 2014; 5: 400
  • 25 Kelly AM, Golden-Mason L, Traynor O. et al. Changes in hepatic immunoregulatory cytokines in patients with metastatic colorectal carcinoma: implications for hepatic anti-tumour immunity. Cytokine 2006; 35 (3–4): 171-179
  • 26 Golden-Mason L, Kelly AM, Doherty DG. et al. Hepatic interleuklin 15 (IL-15) expression: implications for local NK/NKT cell homeostasis and development. Clin Exp Immunol 2004; 138 (01) 94-101
  • 27 Hand FM. The Altered Immune Microenvironment of Human Liver in Metastatic Disease. Dublin: Trinity College Dublin; 2021
  • 28 Duffy AG, Makarova-Rusher OV, Greten TF. The case for immune-based approaches in biliary tract carcinoma. Hepatology 2016; 64 (05) 1785-1791
  • 29 Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow?. Lancet 2001; 357 (9255): 539-545
  • 30 Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science 2015; 348 (6230): 69-74
  • 31 Sun B, Karin M. Obesity, inflammation, and liver cancer. J Hepatol 2012; 56 (03) 704-713
  • 32 Luedde T, Schwabe RF. NF-κB in the liver–linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2011; 8 (02) 108-118
  • 33 Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol 2004; 22: 329-360
  • 34 Gabrilovich D. Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 2004; 4 (12) 941-952
  • 35 Ostrand-Rosenberg S, Sinha P, Beury DW, Clements VK. Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Semin Cancer Biol 2012; 22 (04) 275-281
  • 36 Duffy A, Zhao F, Haile L. et al. Comparative analysis of monocytic and granulocytic myeloid-derived suppressor cell subsets in patients with gastrointestinal malignancies. Cancer Immunol Immunother 2013; 62 (02) 299-307
  • 37 Eggert T, Greten TF. Tumor regulation of the tissue environment in the liver. Pharmacol Ther 2017; 173: 47-57
  • 38 Jiang Y, Li Y, Zhu B. T-cell exhaustion in the tumor microenvironment. Cell Death Dis 2015; 6: e1792
  • 39 Trinchieri G. Cancer and inflammation: an old intuition with rapidly evolving new concepts. Annu Rev Immunol 2012; 30: 677-706
  • 40 Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol 2019; 16 (10) 589-604
  • 41 Chang JS, Tsai CR, Chen LT. Medical risk factors associated with cholangiocarcinoma in Taiwan: a population-based case-control study. PLoS One 2013; 8 (07) e69981
  • 42 Rizvi S, Gores GJ. Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology 2013; 145 (06) 1215-1229
  • 43 Schurich A, Böttcher JP, Burgdorf S. et al. Distinct kinetics and dynamics of cross-presentation in liver sinusoidal endothelial cells compared to dendritic cells. Hepatology 2009; 50 (03) 909-919
  • 44 Arteta B, Lasuen N, Lopategi A, Sveinbjörnsson B, Smedsrød B, Vidal-Vanaclocha F. Colon carcinoma cell interaction with liver sinusoidal endothelium inhibits organ-specific antitumor immunity through interleukin-1-induced mannose receptor in mice. Hepatology 2010; 51 (06) 2172-2182
  • 45 Höchst B, Schildberg FA, Böttcher J. et al. Liver sinusoidal endothelial cells contribute to CD8 T cell tolerance toward circulating carcinoembryonic antigen in mice. Hepatology 2012; 56 (05) 1924-1933
  • 46 Crispe IN. Immune tolerance in liver disease. Hepatology 2014; 60 (06) 2109-2117
  • 47 Lerut J, Sanchez-Fueyo A. An appraisal of tolerance in liver transplantation. Am J Transplant 2006; 6 (08) 1774-1780
  • 48 Calne RY. Early days of liver transplantation. Am J Transplant 2008; 8 (09) 1775-1778
  • 49 Calne R, Friend P, Moffatt S. et al. Prope tolerance, perioperative campath 1H, and low-dose cyclosporin monotherapy in renal allograft recipients. Lancet 1998; 351 (9117): 1701-1702
  • 50 Moini M, Schilsky ML, Tichy EM. Review on immunosuppression in liver transplantation. World J Hepatol 2015; 7 (10) 1355-1368
  • 51 Refolo MG, Messa C, Guerra V, Carr BI, D'Alessandro R. Inflammatory mechanisms of HCC development. Cancers (Basel) 2020; 12 (03) 12
  • 52 Kang TW, Yevsa T, Woller N. et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 2011; 479 (7374): 547-551
  • 53 Lanaya H, Natarajan A, Komposch K. et al. EGFR has a tumour-promoting role in liver macrophages during hepatocellular carcinoma formation. Nat Cell Biol 2014; 16 (10) 972-977
  • 54 Knolle P, Schlaak J, Uhrig A, Kempf P, Meyer zum Büschenfelde KH, Gerken G. Human Kupffer cells secrete IL-10 in response to lipopolysaccharide (LPS) challenge. J Hepatol 1995; 22 (02) 226-229
  • 55 Knolle PA, Uhrig A, Hegenbarth S. et al. IL-10 down-regulates T cell activation by antigen-presenting liver sinusoidal endothelial cells through decreased antigen uptake via the mannose receptor and lowered surface expression of accessory molecules. Clin Exp Immunol 1998; 114 (03) 427-433
  • 56 Heymann F, Peusquens J, Ludwig-Portugall I. et al. Liver inflammation abrogates immunological tolerance induced by Kupffer cells. Hepatology 2015; 62 (01) 279-291
  • 57 De Creus A, Abe M, Lau AH, Hackstein H, Raimondi G, Thomson AW. Low TLR4 expression by liver dendritic cells correlates with reduced capacity to activate allogeneic T cells in response to endotoxin. J Immunol 2005; 174 (04) 2037-2045
  • 58 Bamboat ZM, Stableford JA, Plitas G. et al. Human liver dendritic cells promote T cell hyporesponsiveness. J Immunol 2009; 182 (04) 1901-1911
  • 59 Goddard S, Youster J, Morgan E, Adams DH. Interleukin-10 secretion differentiates dendritic cells from human liver and skin. Am J Pathol 2004; 164 (02) 511-519
  • 60 Kingham TP, Chaudhry UI, Plitas G, Katz SC, Raab J, DeMatteo RP. Murine liver plasmacytoid dendritic cells become potent immunostimulatory cells after Flt-3 ligand expansion. Hepatology 2007; 45 (02) 445-454
  • 61 Tokita D, Sumpter TL, Raimondi G. et al. Poor allostimulatory function of liver plasmacytoid DC is associated with pro-apoptotic activity, dependent on regulatory T cells. J Hepatol 2008; 49 (06) 1008-1018
  • 62 Horst AK, Neumann K, Diehl L, Tiegs G. Modulation of liver tolerance by conventional and nonconventional antigen-presenting cells and regulatory immune cells. Cell Mol Immunol 2016; 13 (03) 277-292
  • 63 Thomson AW, Knolle PA. Antigen-presenting cell function in the tolerogenic liver environment. Nat Rev Immunol 2010; 10 (11) 753-766
  • 64 Wuensch SA, Spahn J, Crispe IN. Direct, help-independent priming of CD8+ T cells by adeno-associated virus-transduced hepatocytes. Hepatology 2010; 52 (03) 1068-1077
  • 65 Bowen DG, Zen M, Holz L, Davis T, McCaughan GW, Bertolino P. The site of primary T cell activation is a determinant of the balance between intrahepatic tolerance and immunity. J Clin Invest 2004; 114 (05) 701-712
  • 66 Zhang Z, Zeng P, Gao W, Zhou Q, Feng T, Tian X. Circadian clock: a regulator of the immunity in cancer. Cell Commun Signal 2021; 19 (01) 37
  • 67 Li X, Ramadori P, Pfister D, Seehawer M, Zender L, Heikenwalder M. The immunological and metabolic landscape in primary and metastatic liver cancer. Nat Rev Cancer 2021; 21 (09) 541-557
  • 68 Zasłona Z, O'Neill LAJ. Cytokine-like roles for metabolites in immunity. Mol Cell 2020; 78 (05) 814-823
  • 69 Pålsson-McDermott EM, O'Neill LAJ. Targeting immunometabolism as an anti-inflammatory strategy. Cell Res 2020; 30 (04) 300-314
  • 70 Tannahill GM, Curtis AM, Adamik J. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 2013; 496 (7444): 238-242
  • 71 Tall AR, Yvan-Charvet L. Cholesterol, inflammation and innate immunity. Nat Rev Immunol 2015; 15 (02) 104-116
  • 72 Tilg H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 2010; 52 (05) 1836-1846
  • 73 Satriano L, Lewinska M, Rodrigues PM, Banales JM, Andersen JB. Metabolic rearrangements in primary liver cancers: cause and consequences. Nat Rev Gastroenterol Hepatol 2019; 16 (12) 748-766
  • 74 Liu H, Wang ZG, Fu SY. et al. Randomized clinical trial of chemoembolization plus radiofrequency ablation versus partial hepatectomy for hepatocellular carcinoma within the Milan criteria. Br J Surg 2016; 103 (04) 348-356
  • 75 Tan HNC, Catedral LIG, San Juan MD. Prognostic significance of tumor-infiltrating lymphocytes on survival outcomes of patients with resected pancreatic ductal adenocarcinoma: a systematic review and meta-analysis. J Immunother 2021; 44 (01) 29-40
  • 76 Mlecnik B, Bifulco C, Bindea G. et al. Multicenter International Society for Immunotherapy of Cancer study of the consensus immunoscore for the prediction of survival and response to chemotherapy in stage III colon cancer. J Clin Oncol 2020; 38 (31) 3638-3651
  • 77 Jobin G, Rodriguez-Suarez R, Betito K. Association between natural killer cell activity and colorectal cancer in high-risk subjects undergoing colonoscopy. Gastroenterology 2017; 153 (04) 980-987
  • 78 Peng H, Wisse E, Tian Z. Liver natural killer cells: subsets and roles in liver immunity. Cell Mol Immunol 2016; 13 (03) 328-336
  • 79 Zhang Z, Zhang S, Zou Z. et al. Hypercytolytic activity of hepatic natural killer cells correlates with liver injury in chronic hepatitis B patients. Hepatology 2011; 53 (01) 73-85
  • 80 Ishiyama K, Ohdan H, Ohira M, Mitsuta H, Arihiro K, Asahara T. Difference in cytotoxicity against hepatocellular carcinoma between liver and periphery natural killer cells in humans. Hepatology 2006; 43 (02) 362-372
  • 81 Hand F, Harmon C, Elliott LA. et al. Depleted polymorphonuclear leukocytes in human metastatic liver reflect an altered immune microenvironment associated with recurrent metastasis. Cancer Immunol Immunother 2018; 67 (07) 1041-1052
  • 82 Kelly AM, Golden-Mason L, McEntee G. et al. Interleukin 12 (IL-12) is increased in tumour bearing human liver and expands CD8(+) and CD56(+) T cells in vitro but not in vivo. Cytokine 2004; 25 (06) 273-282
  • 83 Sun C, Xu J, Huang Q. et al. High NKG2A expression contributes to NK cell exhaustion and predicts a poor prognosis of patients with liver cancer. OncoImmunology 2016; 6 (01) e1264562
  • 84 Zhang PF, Gao C, Huang XY. et al. Cancer cell-derived exosomal circUHRF1 induces natural killer cell exhaustion and may cause resistance to anti-PD1 therapy in hepatocellular carcinoma. Mol Cancer 2020; 19 (01) 110
  • 85 Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012; 12 (04) 252-264
  • 86 Procaccio L, Schirripa M, Fassan M. et al. Immunotherapy in gastrointestinal cancers. BioMed Res Int 2017; 2017: 4346576
  • 87 Finn RS, Qin S, Ikeda M. et al; IMbrave150 Investigators. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med 2020; 382 (20) 1894-1905
  • 88 Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 2016; 16 (05) 275-287
  • 89 Fu J, Xu D, Liu Z. et al. Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology 2007; 132 (07) 2328-2339
  • 90 Gao Q, Qiu SJ, Fan J. et al. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol 2007; 25 (18) 2586-2593
  • 91 Mizukoshi E, Nakamoto Y, Arai K. et al. Comparative analysis of various tumor-associated antigen-specific t-cell responses in patients with hepatocellular carcinoma. Hepatology 2011; 53 (04) 1206-1216
  • 92 Tran E, Turcotte S, Gros A. et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 2014; 344 (6184): 641-645
  • 93 Tran E, Ahmadzadeh M, Lu YC. et al. Immunogenicity of somatic mutations in human gastrointestinal cancers. Science 2015; 350 (6266): 1387-1390
  • 94 Finn RS, Ikeda M, Zhu AX. et al. Phase Ib study of lenvatinib plus pembrolizumab in patients with unresectable hepatocellular carcinoma. J Clin Oncol 2020; 38 (26) 2960-2970
  • 95 Voron T, Colussi O, Marcheteau E. et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med 2015; 212 (02) 139-148
  • 96 Sawada Y, Yoshikawa T, Ofuji K. et al. Phase II study of the GPC3-derived peptide vaccine as an adjuvant therapy for hepatocellular carcinoma patients. OncoImmunology 2016; 5 (05) e1129483
  • 97 Wang Y, Yang X, Yu Y. et al. Immunotherapy of patient with hepatocellular carcinoma using cytotoxic T lymphocytes ex vivo activated with tumor antigen-pulsed dendritic cells. J Cancer 2018; 9 (02) 275-287
  • 98 Yutani S, Ueshima K, Abe K. et al. Phase II study of personalized peptide vaccination with both a hepatitis C virus-derived peptide and peptides from tumor-associated antigens for the treatment of HCV-positive advanced hepatocellular carcinoma patients. J Immunol Res 2015; 2015: 473909
  • 99 Nakagawa H, Mizukoshi E, Kobayashi E. et al. Association between high-avidity T-cell receptors, induced by α-fetoprotein-derived peptides, and anti-tumor effects in patients with hepatocellular carcinoma. Gastroenterology 2017; 152 (06) 1395-1406.e10
  • 100 Tran T, Blanc C, Granier C, Saldmann A, Tanchot C, Tartour E. Therapeutic cancer vaccine: building the future from lessons of the past. Semin Immunopathol 2019; 41 (01) 69-85
  • 101 Lu L, Jiang J, Zhan M. et al. Targeting tumor-associated antigens in hepatocellular carcinoma for immunotherapy: past pitfalls and future strategies. Hepatology 2021; 73 (02) 821-832
  • 102 Hemminki O, Dos Santos JM, Hemminki A. Oncolytic viruses for cancer immunotherapy. J Hematol Oncol 2020; 13 (01) 84
  • 103 Breitbach CJ, Moon A, Burke J, Hwang TH, Kirn DH. A phase 2, open-label, randomized study of Pexa-Vec (JX-594) administered by intratumoral injection in patients with unresectable primary hepatocellular carcinoma. Methods Mol Biol 2015; 1317: 343-357
  • 104 Sivanandam V, LaRocca CJ, Chen NG, Fong Y, Warner SG. Oncolytic viruses and immune checkpoint inhibition: the best of both worlds. Mol Ther Oncolytics 2019; 13: 93-106
  • 105 Dummer R, Hoeller C, Gruter IP, Michielin O. Combining talimogene laherparepvec with immunotherapies in melanoma and other solid tumors. Cancer Immunol Immunother 2017; 66 (06) 683-695
  • 106 Greten TF, Mauda-Havakuk M, Heinrich B, Korangy F, Wood BJ. Combined locoregional-immunotherapy for liver cancer. J Hepatol 2019; 70 (05) 999-1007
  • 107 Hiroishi K, Eguchi J, Baba T. et al. Strong CD8(+) T-cell responses against tumor-associated antigens prolong the recurrence-free interval after tumor treatment in patients with hepatocellular carcinoma. J Gastroenterol 2010; 45 (04) 451-458
  • 108 Mizukoshi E, Yamashita T, Arai K. et al. Enhancement of tumor-associated antigen-specific T cell responses by radiofrequency ablation of hepatocellular carcinoma. Hepatology 2013; 57 (04) 1448-1457
  • 109 Duffy AG, Ulahannan SV, Makorova-Rusher O. et al. Tremelimumab in combination with ablation in patients with advanced hepatocellular carcinoma. J Hepatol 2017; 66 (03) 545-551
  • 110 Xie C, Duffy AG, Mabry-Hrones D. et al. Tremelimumab in combination with microwave ablation in patients with refractory biliary tract cancer. Hepatology 2019; 69 (05) 2048-2060
  • 111 Huang PW, Chang JW. Immune checkpoint inhibitors win the 2018 Nobel Prize. Biomed J 2019; 42 (05) 299-306
  • 112 Lee H, Quek C, Silva I. et al. Integrated molecular and immunophenotypic analysis of NK cells in anti-PD-1 treated metastatic melanoma patients. OncoImmunology 2018; 8 (02) e1537581
  • 113 Barry KC, Hsu J, Broz ML. et al. A natural killer-dendritic cell axis defines checkpoint therapy-responsive tumor microenvironments. Nat Med 2018; 24 (08) 1178-1191
  • 114 Alnaggar M, Lin M, Mesmar A. et al. Allogenic natural killer cell immunotherapy combined with irreversible electroporation for stage IV hepatocellular carcinoma: survival outcome. Cell Physiol Biochem 2018; 48 (05) 1882-1893
  • 115 Cany J, van der Waart AB, Spanholtz J. et al. Combined IL-15 and IL-12 drives the generation of CD34+-derived natural killer cells with superior maturation and alloreactivity potential following adoptive transfer. OncoImmunology 2015; 4 (07) e1017701
  • 116 Becker PS, Suck G, Nowakowska P. et al. Selection and expansion of natural killer cells for NK cell-based immunotherapy. Cancer Immunol Immunother 2016; 65 (04) 477-484
  • 117 Rezvani K, Rouce R, Liu E, Shpall E. Engineering natural killer cells for cancer immunotherapy. Mol Ther 2017; 25 (08) 1769-1781
  • 118 Klapper JA, Downey SG, Smith FO. et al. High-dose interleukin-2 for the treatment of metastatic renal cell carcinoma : a retrospective analysis of response and survival in patients treated in the surgery branch at the National Cancer Institute between 1986 and 2006. Cancer 2008; 113 (02) 293-301
  • 119 Conlon KC, Miljkovic MD, Waldmann TA. Cytokines in the treatment of cancer. J Interferon Cytokine Res 2019; 39 (01) 6-21
  • 120 Conlon KC, Potter EL, Pittaluga S. et al. IL15 by continuous intravenous infusion to adult patients with solid tumors in a phase I trial induced dramatic NK-cell subset expansion. Clin Cancer Res 2019; 25 (16) 4945-4954
  • 121 Waldmann TA, Dubois S, Miljkovic MD, Conlon KC. IL-15 in the combination immunotherapy of cancer. Front Immunol 2020; 11: 868
  • 122 Zhang M, Wen B, Anton OM. et al. IL-15 enhanced antibody-dependent cellular cytotoxicity mediated by NK cells and macrophages. Proc Natl Acad Sci U S A 2018; 115 (46) E10915-E10924
  • 123 Concha-Benavente F, Kansy B, Moskovitz J, Moy J, Chandran U, Ferris RL. PD-L1 mediates dysfunction in activated PD-1+ NK cells in head and neck cancer patients. Cancer Immunol Res 2018; 6 (12) 1548-1560
  • 124 Ferris RL, Lenz HJ, Trotta AM. et al. Rationale for combination of therapeutic antibodies targeting tumor cells and immune checkpoint receptors: harnessing innate and adaptive immunity through IgG1 isotype immune effector stimulation. Cancer Treat Rev 2018; 63: 48-60
  • 125 Sivori S, Vacca P, Del Zotto G, Munari E, Mingari MC, Moretta L. Human NK cells: surface receptors, inhibitory checkpoints, and translational applications. Cell Mol Immunol 2019; 16 (05) 430-441
  • 126 André P, Denis C, Soulas C. et al. Anti-NKG2A mAb Is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells. Cell 2018; 175 (07) 1731-1743.e13
  • 127 Tan S, Xu Y, Wang Z. et al. Tim-3 hampers tumor surveillance of liver-resident and conventional NK cells by disrupting PI3K signaling. Cancer Res 2020; 80 (05) 1130-1142