J Knee Surg 2022; 35(11): 1165-1174
DOI: 10.1055/s-0042-1744190
Special Focus Section

Treatment of Cartilage Defects of the Knee in Military Tactical Athletes: An Overview of Management and Clinical Outcomes

1   Department of Orthopaedic Surgery, San Antonio Military Medical Center, San Antonio, Texas
,
Thomas B. Lynch
1   Department of Orthopaedic Surgery, San Antonio Military Medical Center, San Antonio, Texas
,
Andrew J. Sheean
1   Department of Orthopaedic Surgery, San Antonio Military Medical Center, San Antonio, Texas
› Author Affiliations

Abstract

Cartilage defects of the knee are a common problem that can be caused by trauma or chronic repetitive overload and result in debilitating functional limitations. These consequences are of particular significance to military service members, who, by in large, are a group of young, active individuals with professional duties requiring full, unrestricted activity and function. The burden of knee chondral-related disease among military tactical athletes is well established, and systematic approach to the evaluation of a military member with suspected knee chondral pathology facilitates the execution of a surgical procedure that maximizes the likelihood of a return to duty. Despite advances in cartilage restoration surgery, chondral pathology of the knee remains a vexing problem and an omnipresent threat to military medical readiness and warfighter lethality.



Publication History

Received: 16 November 2021

Accepted: 24 January 2022

Article published online:
29 April 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Grieshober JA, Stanton M, Gambardella R. Debridement of articular cartilage: the natural course. Sports Med Arthrosc Rev 2016; 24 (02) 56-62
  • 2 Flanigan DC, Harris JD, Trinh TQ, Siston RA, Brophy RH. Prevalence of chondral defects in athletes' knees: a systematic review. Med Sci Sports Exerc 2010; 42 (10) 1795-1801
  • 3 Fitzpatrick K, Tokish JM. A military perspective to articular cartilage defects. J Knee Surg 2011; 24 (03) 159-166
  • 4 Gowd AK, Weimer AE, Rider DE. et al. Cartilage restoration of bipolar lesions within the patellofemoral joint delays need for arthroplasty: A systematic review of rates of failure. Arthrosc Sports Med Rehabil 2021; 3 (04) e1189-e1197
  • 5 Gowd AK, Weimer AE, Rider DE. et al. Cartilage restoration for tibiofemoral bipolar lesions results in promising failure rates: a systematic review. Arthrosc Sports Med Rehabil 2021; 3 (04) e1227-e1235
  • 6 Gowd AK, Cvetanovich GL, Liu JN. et al. Management of chondral lesions of the knee: Analysis of trends and short-term complications using the national surgical quality improvement program database. Arthroscopy 2019; 35 (01) 138-146
  • 7 Harris JD, Brophy RH, Siston RA, Flanigan DC. Treatment of chondral defects in the athlete's knee. Arthroscopy 2010; 26 (06) 841-852
  • 8 Sheean AJ, Dickens JF, Provencher MT. Extremity war injury symposium XV: Sports and readiness symposium summary. J Am Acad Orthop Surg 2022; 30 (05) 189-194
  • 9 Mehran N, Singla V, Okoroha KR, Mitchell JJ. Functional outcomes and return to sport after cartilage restoration of the knee in high-level athletes. J Am Acad Orthop Surg 2021; 29 (21) 910-919
  • 10 Krych AJ, Robertson CM, Williams III RJ. Cartilage Study Group. Return to athletic activity after osteochondral allograft transplantation in the knee. Am J Sports Med 2012; 40 (05) 1053-1059
  • 11 Mithoefer K, Williams III RJ, Warren RF, Wickiewicz TL, Marx RG. High-impact athletics after knee articular cartilage repair: a prospective evaluation of the microfracture technique. Am J Sports Med 2006; 34 (09) 1413-1418
  • 12 Minas T, Gomoll AH, Rosenberger R, Royce RO, Bryant T. Increased failure rate of autologous chondrocyte implantation after previous treatment with marrow stimulation techniques. Am J Sports Med 2009; 37 (05) 902-908
  • 13 Ackermann J, Merkely G, Arango D, Mestriner AB, Gomoll AH. The effect of mechanical leg alignment on cartilage restoration with and without concomitant high tibial osteotomy. Arthroscopy 2020; 36 (08) 2204-2214
  • 14 Shelburne KB, Kim HJ, Sterett WI, Pandy MG. Effect of posterior tibial slope on knee biomechanics during functional activity. J Orthop Res 2011; 29 (02) 223-231
  • 15 Krych AJ, Saris DBF, Stuart MJ, Hacken B. Cartilage injury in the knee: assessment and treatment options. J Am Acad Orthop Surg 2020; 28 (22) 914-922
  • 16 Anderson DE, Rose MB, Wille AJ, Wiedrick J, Crawford DC. Arthroscopic mechanical chondroplasty of the knee is beneficial for treatment of focal cartilage lesions in the absence of concurrent pathology. Orthop J Sports Med 2017; 5 (05) 2325967117707213
  • 17 Scillia AJ, Aune KT, Andrachuk JS. et al. Return to play after chondroplasty of the knee in National Football League athletes. Am J Sports Med 2015; 43 (03) 663-668
  • 18 Gudas R, Gudaitė A, Mickevičius T. et al. Comparison of osteochondral autologous transplantation, microfracture, or debridement techniques in articular cartilage lesions associated with anterior cruciate ligament injury: a prospective study with a 3-year follow-up. Arthroscopy 2013; 29 (01) 89-97
  • 19 Gobbi A, Karnatzikos G, Kumar A. Long-term results after microfracture treatment for full-thickness knee chondral lesions in athletes. Knee Surg Sports Traumatol Arthrosc 2014; 22 (09) 1986-1996
  • 20 Mithoefer K, Gill TJ, Cole BJ, Williams RJ, Mandelbaum BR. Clinical outcome and return to competition after microfracture in the athlete's knee: An evidence-based systematic review. Cartilage 2010; 1 (02) 113-120
  • 21 Cerynik DL, Lewullis GE, Joves BC, Palmer MP, Tom JA. Outcomes of microfracture in professional basketball players. Knee Surg Sports Traumatol Arthrosc 2009; 17 (09) 1135-1139
  • 22 Harris JD, Walton DM, Erickson BJ. et al. Return to sport and performance after microfracture in the knees of national basketball association players. Orthop J Sports Med 2013; 1 (06) 2325967113512759
  • 23 Krych AJ, Pareek A, King AH, Johnson NR, Stuart MJ, Williams III RJ. Return to sport after the surgical management of articular cartilage lesions in the knee: a meta-analysis. Knee Surg Sports Traumatol Arthrosc 2017; 25 (10) 3186-3196
  • 24 Strauss EJ, Barker JU, Kercher JS, Cole BJ, Mithoefer K. Augmentation strategies following the microfracture technique for repair of focal chondral defects. Cartilage 2010; 1 (02) 145-152
  • 25 Cole BJ, Haunschild ED, Carter T, Meyer J, Fortier LA, Gilat R. BC (BioCartilage) Study Group. Clinically significant outcomes following the treatment of focal cartilage defects of the knee with microfracture augmentation using cartilage allograft extracellular matrix: A multicenter prospective study. Arthroscopy 2021; 37 (05) 1512-1521
  • 26 Brusalis CM, Greditzer IV HG, Fabricant PD, Stannard JP, Cook JL. BioCartilage augmentation of marrow stimulation procedures for cartilage defects of the knee: Two-year clinical outcomes. Knee 2020; 27 (05) 1418-1425
  • 27 Gudas R, Gudaite A, Pocius A. et al. Ten-year follow-up of a prospective, randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint of athletes. Am J Sports Med 2012; 40 (11) 2499-2508
  • 28 Solheim E, Hegna J, Inderhaug E. Long-term survival after microfracture and mosaicplasty for knee articular cartilage repair: a comparative study between two treatments cohorts. Cartilage 2020; 11 (01) 71-76
  • 29 Gudas R, Kalesinskas RJ, Kimtys V. et al. A prospective randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint in young athletes. Arthroscopy 2005; 21 (09) 1066-1075
  • 30 Gracitelli GC, Meric G, Briggs DT. et al. Fresh osteochondral allografts in the knee: comparison of primary transplantation versus transplantation after failure of previous subchondral marrow stimulation. Am J Sports Med 2015; 43 (04) 885-891
  • 31 Wang T, Wang DX, Burge AJ. et al. Clinical and MRI outcomes of fresh osteochondral allograft transplantation after failed cartilage repair surgery in the knee. J Bone Joint Surg Am 2018; 100 (22) 1949-1959
  • 32 Balazs GC, Wang D, Burge AJ, Sinatro AL, Wong AC, Williams III RJ. Return to play among elite basketball players after osteochondral allograft transplantation of full-thickness cartilage lesions. Orthop J Sports Med 2018; 6 (07) 2325967118786941
  • 33 Tírico LEP, McCauley JC, Pulido PA, Bugbee WD. Lesion size does not predict outcomes in fresh osteochondral allograft transplantation. Am J Sports Med 2018; 46 (04) 900-907
  • 34 Familiari F, Cinque ME, Chahla J. et al. Clinical outcomes and failure rates of osteochondral allograft transplantation in the knee: A systematic review. Am J Sports Med 2018; 46 (14) 3541-3549
  • 35 Nielsen ES, McCauley JC, Pulido PA, Bugbee WD. Return to sport and recreational activity after osteochondral allograft transplantation in the knee. Am J Sports Med 2017; 45 (07) 1608-1614
  • 36 Cavendish PA, Everhart JS, Peters NJ, Sommerfeldt MF, Flanigan DC. Osteochondral allograft transplantation for knee cartilage and osteochondral defects: a review of indications, technique, rehabilitation, and outcomes. JBJS Rev 2019; 7 (06) e7
  • 37 Waterman BR, Waterman SM, McCriskin B, Beck EC, Graves RM. Particulated juvenile articular cartilage allograft for treatment of chondral defects of the knee: short-term survivorship with functional outcomes. J Surg Orthop Adv 2021; 30 (01) 10-13
  • 38 Shaha JS, Cook JB, Rowles DJ, Bottoni CR, Shaha SH, Tokish JM. Return to an athletic lifestyle after osteochondral allograft transplantation of the knee. Am J Sports Med 2013; 41 (09) 2083-2089
  • 39 Scully WF, Parada SA, Arrington ED. Allograft osteochondral transplantation in the knee in the active duty population. Mil Med 2011; 176 (10) 1196-1201
  • 40 Ebert JR, Fallon M, Zheng MH, Wood DJ, Ackland TR. A randomized trial comparing accelerated and traditional approaches to postoperative weightbearing rehabilitation after matrix-induced autologous chondrocyte implantation: findings at 5 years. Am J Sports Med 2012; 40 (07) 1527-1537
  • 41 Behrens P, Bitter T, Kurz B, Russlies M. Matrix-associated autologous chondrocyte transplantation/implantation (MACT/MACI)–5-year follow-up. Knee 2006; 13 (03) 194-202
  • 42 Ebert JR, Robertson WB, Woodhouse J. et al. Clinical and magnetic resonance imaging-based outcomes to 5 years after matrix-induced autologous chondrocyte implantation to address articular cartilage defects in the knee. Am J Sports Med 2011; 39 (04) 753-763
  • 43 Genovese E, Ronga M, Angeretti MG. et al. Matrix-induced autologous chondrocyte implantation of the knee: mid-term and long-term follow-up by MR arthrography. Skeletal Radiol 2011; 40 (01) 47-56
  • 44 Calvi M, Curti M, Ossola C. et al. Knee articular cartilage injury treatment with matrix-induced autologous chondrocyte implantation (MACI): correlation at 24 and 120 months between clinical and radiological findings using MR arthrography. Skeletal Radiol 2021; 50 (10) 2079-2090
  • 45 Ebert JR, Fallon M, Wood DJ, Janes GC. Long-term prospective clinical and magnetic resonance imaging-based evaluation of matrix-induced autologous chondrocyte implantation. Am J Sports Med 2021; 49 (03) 579-587
  • 46 Binder H, Hoffman L, Zak L, Tiefenboeck T, Aldrian S, Albrecht C. Clinical evaluation after matrix-associated autologous chondrocyte transplantation: a comparison of four different graft types. Bone Joint Res 2021; 10 (07) 370-379
  • 47 Kon E, Gobbi A, Filardo G, Delcogliano M, Zaffagnini S, Marcacci M. Arthroscopic second-generation autologous chondrocyte implantation compared with microfracture for chondral lesions of the knee: prospective nonrandomized study at 5 years. Am J Sports Med 2009; 37 (01) 33-41
  • 48 Zak L, Aldrian S, Wondrasch B, Albrecht C, Marlovits S. Ability to return to sports 5 years after matrix-associated autologous chondrocyte transplantation in an average population of active patients. Am J Sports Med 2012; 40 (12) 2815-2821
  • 49 Pestka JM, Feucht MJ, Porichis S, Bode G, Südkamp NP, Niemeyer P. Return to sports activity and work after autologous chondrocyte implantation of the knee: Which factors influence outcomes?. Am J Sports Med 2016; 44 (02) 370-377
  • 50 Krishnan SP, Skinner JA, Bartlett W. et al. Who is the ideal candidate for autologous chondrocyte implantation?. J Bone Joint Surg Br 2006; 88 (01) 61-64
  • 51 Harris JD, Siston RA, Pan X, Flanigan DC. Autologous chondrocyte implantation: a systematic review. J Bone Joint Surg Am 2010; 92 (12) 2220-2233
  • 52 Hinckel BB, Thomas D, Vellios EE. et al. Algorithm for treatment of focal cartilage defects of the knee: classic and new procedures. Cartilage 2021; 13 (1_suppl): 473S-495S
  • 53 Farr J, Tabet SK, Margerrison E, Cole BJ. Clinical, radiographic, and histological outcomes after cartilage repair with particulated juvenile articular cartilage: a 2-year prospective study. Am J Sports Med 2014; 42 (06) 1417-1425
  • 54 Pánics G, Hangody LR, Baló E, Vásárhelyi G, Gál T, Hangody L. Osteochondral autograft and mosaicplasty in the football (soccer) athlete. Cartilage 2012; 3 (Suppl. 01) 25S-30S
  • 55 Kreuz PC, Steinwachs M, Erggelet C. et al. Importance of sports in cartilage regeneration after autologous chondrocyte implantation: a prospective study with a 3-year follow-up. Am J Sports Med 2007; 35 (08) 1261-1268
  • 56 Cook JL, Rucinski K, Crecelius CR, Ma R, Stannard JP. Return to sport after large single-surface, multisurface, or bipolar osteochondral allograft transplantation in the knee using shell grafts. Orthop J Sports Med 2021; 9 (01) 2325967120967928
  • 57 Eichinger MJ, Bluman EM, Arrington CE. Penetrating blast injury to the knee of a United States Soldier treated with allograft mosaicplasty. Cartilage 2011; 2 (03) 307-311