Association of Anthropometric and Body Adiposity Measures with Thyroid Dysfunction in Clinical Settings of Manipur, Northeast India

Kh Dimkhohoi Baite1, Ajit Lukram2, Jmkhoupum Baite3, Sanjenbam Yaiphaba Meitei1

1Department of Anthropology, Manipur University, Imphal, Manipur, India
2Shija Breast and Thyroid Clinic, Shija Hospitals & Research Institute, Langol, Imphal, Manipur, India
3Churachandpur District Hospital, IB Road, Hiangtam Lamka, Churachandpur, Manipur, India

Address for correspondence Sanjenbam Yaiphaba Meitei, PhD, Department of Anthropology, Manipur University, Imphal, Manipur (795003), India (e-mail: sanyaimei@gmail.com).

Abstract

Objective This study aimed to understand the association of anthropometric and body adiposity measures with thyroid dysfunction in clinical settings of Manipur, Northeast India.

Materials and Methods The study included 160 Meitei and 152 Thadou-Kuki thyroid dysfunction patients undergoing treatment under medical specialists. Anthropometric data and related adiposity measures were collected along with the medical data.

Results Hypothyroid represents 70.83% and hyperthyroid 29.17% of the total samples included in the study. The incidence of hypothyroid and hyperthyroid, irrespective of ethnic groups, is higher among females (87.49%) than males (12.49%). Hypothyroid individuals are significantly heavier and have higher adiposity measures than hyperthyroid, which is more significantly observed among the Thadou Kuki. Significantly higher waist circumference and weight to height ratio among the hypothyroid patients put the notion of adiposity deposition, apart from just water retention. Ethnic variation in the association reflects socioeconomic intervention in the management of thyroid problems.

Keywords
► hypothyroidism
► hyperthyroidism
► body adiposity
► Meitei
► Thadou Kuki

Conclusion In conclusion, proper dietary intake or supplements in the course of thyroid dysfunction treatment are important as they can complicate thyroid dysfunction patients with other associated comorbidities.

Introduction

Thyroid hormone dysfunction is one of the critical health issues, with over 1.6 billion people worldwide are at risk. Of these, hypothyroidism and hyperthyroidism are the primary dysfunctions that affect overall health. Thyroid hormones are essential regulators of basal and total energy consumption and influence body composition. Indeed, thyroid dysfunction has profound effects on body composition as hyperthyroidism is associated with weight loss, and hypothyroidism appears to cause a modest increase in weight. Various studies suggest positive associations between TSH serum...
levels and body mass index (BMI),5–8 thereby suggesting body composition could be one of the important parameters associated with thyroid dysfunction. This is further affirmed by increased TSH and free triiodothyronine (T3) in obesity,9,10 suggesting thyroid dysfunction is allied with fluctuations in body weight and composition.11

In India, too, thyroid dysfunction affects an estimated population of ~42 million people.12 However, there is still a lack of information on the association of obesity with thyroid dysfunction, as studies from Asian Indians are significantly less, though the incidence of obesity is quite alarming. It is assumed that India could have the maximum burden of metabolic syndrome-associated disorders in the next few decades. Body adiposity changes due to thyroid dysfunction could be problematic as they can complicate the morbid and may be prone to other complications. Considering this research gap, the present study attempts to understand the association of anthropometric and body adiposity measures with thyroid dysfunction in two ethnic groups of Manipur, Northeast India, under clinical settings.

Materials and Methods

The present study was performed among the Meitei and Thadou-Kuki adults of Manipur, Northeast India, who had attended the Thyroid Clinic of Shija Hospitals, Imphal and Zion Clinic, Tuirong, Churachandpur, from April 2019 to February 2021. The study included 312 samples altogether—160 Meitei and 152 Thadou-Kuki patients undergoing hypothyroid and hyperthyroid treatment under medical specialists. The sample size was determined using EpisInfo software, assuming at a 5% acceptable margin of error with 50% expected frequency of thyroid dysfunction in two clusters of the population at 90% confidence interval, accounting for 135 in each cluster and totaling 270 samples.13 The patients were selected on convenient sampling, though those who had other forms of thyroid disorders like thyroid carcinoma, papillary thyroid carcinoma, goiter, and recently undergoing thyroid surgery in the past were excluded from the study.

Both population groups are native inhabitants of Manipur belonging to Asian ethnicity. These two communities were selected based on the notion of Meitei representing the plain people and the Thadou Kuki as hilly people, as previous studies have highlighted the differential prevalence in the plain and hilly regions.14 The lifestyle of these two groups differs based on their ecological niche. Accessibility to healthcare and other basic amenities also varies, as better infrastructural development are concentrated in the valley areas.

Detailed biosocial information, including medical history and test records, was collected to assign the thyroid dysfunction status. Anthropometric measurements such as height, weight, and waist circumference (WC) were also collected to the nearest 0.5 unit, following standard protocol. Measurements were taken twice to obtain the average value for further data analysis. Different body adiposity measures were extracted from the anthropometric data through relevant indices. Body mass index (BMI) was calculated as weight in kg per height in meters square. Body adiposity through BMI was identified through World Health Organization Asian cutoff.15 WC with cutoff > 90 cm (for male) and > 80 cm (for female) was used to define abdominal obesity.15 Waist to height ratio (WHtR) of 0.5 cutoff value was also used to assess the proportion of central fat by height.16 Waist hip ratio was also used to assess body adiposity with cutoff > 0.95 and > 0.80 for males and females, respectively.17

Descriptive statistics were employed to describe the data. t-test was conducted to find the mean differences of the compared anthropometric and body adiposity variables, and a chi-squared test was conducted to find the association of these variables with thyroid dysfunction. Biserial correlation was used to correlate the quantitative variables of anthropometric and body adiposity measures with dual categorical variables of hypo and hyperthyroidism. All the statistical analyses were done through SPSS 26, and the significance tests were done at 0.05. The participants were informed before the data collection, and consent was taken after explaining the study’s objectives. The study was ethically approved by Institutional Human Ethics Committee, Manipur University under MU/IHEC/2020/017.

Results

The present study includes 312 patients with thyroid hormone dysfunction belonging to two different ethnicities—Meitei and Thadou Kuki of Manipur. Hypothyroid represents 70.83% and hyperthyroid 29.17% of the total samples included in the study. Of the total patients assessed for thyroid dysfunction, 87.49% were females, and 12.51% were males (Table 1). Ethnic wise, 81.57% of Thadou Kuki patients and 93.1% of Meitei patients were females, indicating that the females are outnumbering in the clinical consultation with the specialists.

The distribution of anthropometric and body adiposity measures among the hypothyroid and hyperthyroid is presented in Table 2. Overall, hypothyroid patients have higher anthropometric and body adiposity measures than hyperthyroid. Among the Meiteis patient, hypothyroid patients have more significantly larger WC (80.00 ± 10.34 cm) than hyperthyroid (76.02 ± 8.87 cm). In case of Thadou Kuki, hypothyroid patients are significantly heavier (59.71 ± 10.05 kg), have significantly higher hip circumference (HC) (95.30 ± 13.19 cm), WC (88.65 ± 11.33 cm), BMI (24.73 ± 4.20 kg/m²), and WHtR (0.57 ± 0.07) (Tables 2 and 3).

The correlation of anthropometric and body adiposity measures with hypothyroid and hyperthyroid patients reveals that WC is significantly correlated with thyroid status among the Meiteis. Among the Thadou Kuki, a significant correlation is observed in weight, HC, WC, BMI, and WHtR (Table 3). Among the Meiteis, abdominal obesity is found to be associated with thyroid dysfunction as hypothyroids have significant WC (χ² = 6.83, p < 0.05) and WHtR (χ² = 6.45, p < 0.05) higher than cutoff, as compared with hyperthyroid (Table 4). In case of Thadou Kuki, significant association is
Table 1 Age and sex distribution of the hypothyroid and hyperthyroid Meitei and Thadou Kuki patients of Manipur

<table>
<thead>
<tr>
<th>Thyroid status</th>
<th>Meitei</th>
<th>Thadou Kuki</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
<td>Mean age (y)</td>
</tr>
<tr>
<td>Hypothyroid</td>
<td>7 (4.37)</td>
<td>120 (75)</td>
<td>38.05 ± 11.39</td>
</tr>
<tr>
<td>Hyperthyroid</td>
<td>4 (2.5)</td>
<td>29 (18.1)</td>
<td>41.45 ± 12.41</td>
</tr>
<tr>
<td>χ²</td>
<td>1.787</td>
<td>1.50a</td>
<td>0.321</td>
</tr>
</tbody>
</table>

aSignificant at 0.05.
aSignificant at 0.05.
Number in the parenthesis indicates the percentage.

Table 2 Distribution of anthropometric variables and associated body adiposity measures among hypothyroid and hyperthyroid Meitei and Thadou Kuki patients of Manipur

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Meitei</th>
<th>Thadou Kuki</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hypo</td>
<td>Hyper</td>
<td>t-test</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>157.14 ± 7.37</td>
<td>156.46 ± 6.13</td>
<td>0.48</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>61.09 ± 10.94</td>
<td>57.67 ± 7.94</td>
<td>1.68</td>
</tr>
<tr>
<td>HC (cm)</td>
<td>93.68 ± 8.66</td>
<td>90.87 ± 8.33</td>
<td>1.67</td>
</tr>
<tr>
<td>WC (cm)</td>
<td>80.00 ± 10.34</td>
<td>76.02 ± 8.87</td>
<td>2.02a</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>24.75 ± 4.17</td>
<td>23.61 ± 3.40</td>
<td>1.45</td>
</tr>
<tr>
<td>WHR</td>
<td>0.51 ± 0.06</td>
<td>0.49 ± 0.06</td>
<td>1.86</td>
</tr>
<tr>
<td>WHtR</td>
<td>0.85 ± 0.08</td>
<td>0.83 ± 0.05</td>
<td>1.21</td>
</tr>
</tbody>
</table>

Abbreviations: BMI, body mass index; HC, hip circumference; WC, waist circumference; WHR, waist hip ratio; WHtR, weight to height ratio.
aSignificant at 0.05.
Table 3 Biserial correlation of anthropometric variables and associated body adiposity measures with thyroid status among hypothyroid and hyperthyroid Meitei and Thadou Kuki patients of Manipur.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Meitei</th>
<th>Thadou Kuki</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
<td>r</td>
<td>r</td>
</tr>
<tr>
<td>Height</td>
<td>−0.04</td>
<td>0.01</td>
<td>−0.03</td>
</tr>
<tr>
<td>Weight</td>
<td>−0.13</td>
<td>−0.27</td>
<td>−0.22</td>
</tr>
<tr>
<td>WC</td>
<td>−0.13</td>
<td>−0.33</td>
<td>−0.26</td>
</tr>
<tr>
<td>BMI</td>
<td>−0.16</td>
<td>−0.36</td>
<td>−0.20</td>
</tr>
<tr>
<td>WHR</td>
<td>−0.11</td>
<td>−0.31</td>
<td>−0.23</td>
</tr>
<tr>
<td>WHtR</td>
<td>−0.15</td>
<td>−0.36</td>
<td>−0.19</td>
</tr>
<tr>
<td>WHR</td>
<td>−0.10</td>
<td>−0.06</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Abbreviations: BMI, body mass index; WC, waist circumference; WHR, waist hip ratio; WHtR, weight to height ratio.

observed in BMI ($\chi^2 = 14.69, p < 0.05$), WC ($\chi^2 = 15.95, p < 0.05$), and WHtR ($\chi^2 = 14.73, p < 0.05$).

Discussion

Thyroid dysfunction affects body weight and composition.18,19 The present study also reveals that hypothyroid patients, irrespective of ethnic groups, have higher body adiposity measures than hyperthyroid one. Such body adiposity measures are more significantly expressed among the Thadou Kuki tribesmen than the Meiteis. Studies report that hypothyroidism induces water retention and makes overweight, which is not due to an increase in fat mass.20,21

According to American Thyroid Association, the basal metabolic rate among the hypothyroid is decreased. Consequently, an undeferactory thyroid results in weight gain, which is prominent in severe cases. Such weight gain results from excess accumulation of salt and water.22 On the other hand, hyperthyroidism has traditionally been associated with weight loss and underweight. The hypothyroid patients have adrenergic hyperstimulation with increased basal metabolism and thermogenesis and greater overall energy expenditure resulting in greater energy expenditure tendency toward weight loss.23 However, hyperthyroid patients may also gain weight depending on calorie intake.22

The present finding provides new insight into this discourse, as hypothyroid patients have significantly higher central adiposity as measured by WC and WHtR than the hyperthyroid patients in the studied ethnic population. WC and WHtR are considered better indicators of body adiposity than BMI, as WC measures the overall body fat, while WHtR assesses the proportion of central fat by height.24 This finding is also supported by the correlation analysis with hypothyroid patients having higher anthropometric and body adiposity measures. The association of thyroid dysfunction with body adiposity is a matter of discussion as it can complicate the health condition of the patients related to body adiposity related disorder. However, there are fewer studies on this matter.

The incidence of thyroid dysfunction in the studied ethnic groups is not significant. However, the association of body

Table 4 Association of body adiposity measures with hypothyroid and hyperthyroid Meitei and Thadou Kuki patients of Manipur.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Meitei</th>
<th>Thadou Kuki</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hypo</td>
<td>Hyper</td>
<td>χ^2</td>
</tr>
<tr>
<td>BMI Underweight (<18.5)</td>
<td>4 (2.5)</td>
<td>49 (30.62)</td>
<td>1 (0.62)</td>
</tr>
<tr>
<td>Normal (18.5–23)</td>
<td>45 (28.12)</td>
<td>15 (9.37)</td>
<td>13 (8.12)</td>
</tr>
<tr>
<td>Overweight (23–27.5)</td>
<td>29 (18.12)</td>
<td>28 (18.42)</td>
<td>23 (15.13)</td>
</tr>
<tr>
<td>Abdominal obesity (WC) <90/<80</td>
<td>64 (40)</td>
<td>25 (15.62)</td>
<td>8 (5)</td>
</tr>
<tr>
<td>>90/≥80</td>
<td>63 (39.37)</td>
<td>11 (6.87)</td>
<td>12 (8.55)</td>
</tr>
<tr>
<td>WHR <0.95/≤0.80</td>
<td>39 (24.37)</td>
<td>13 (8.55)</td>
<td>12 (7.89)</td>
</tr>
<tr>
<td>>0.95/≥0.80</td>
<td>88 (55)</td>
<td>81 (53.28)</td>
<td>46 (30.26)</td>
</tr>
<tr>
<td>WhtR <0.5</td>
<td>57 (35.62)</td>
<td>23 (14.37)</td>
<td>19 (12.5)</td>
</tr>
<tr>
<td>≥0.5</td>
<td>70 (43.75)</td>
<td>10 (6.25)</td>
<td>75 (49.34)</td>
</tr>
</tbody>
</table>

Abbreviations: BMI, body mass index; WC, waist circumference; WHR, waist hip ratio; WHtR, weight to height ratio.

*Represents cutoff of male and females, respectively.

*aSignificant at 0.05.

Number in the parenthesis indicates the percentage.
adiposity with thyroid dysfunction differs in these ethnic
groups with more pronounced among the Thadou Kuki, as
reflected by the correlation and mean anthropometric and
adiposity measures. Here, proper nutritional intake may
effectively control body weight, and adiposity measures as
more intake can reduce weight loss among hyperthyroid
patients. The Meitei being plain dwellers have better
socioeconomic facilities that could enable them to access
better nutrition and healthcare than Thadou Kuki, who
mainly live in the hilly terrains where proper healthcare
facilities and better nutrition are minimal.

The higher incidence of thyroid dysfunction among the
females in the present study is concordant with the findings
of other studies. It is reported that women are ten times
more likely to develop thyroid dysfunction. The reason for
such gender disparity in thyroid problems is unclear, yet it is
believed to be related to female sex hormones. The high
occurrence of hypothyroidism and hyperthyroidism among
females in the present study is of utmost concern as it can
complicate their reproductive health.

Strength and Limitation

The study was designed to assess anthropometric and body
adiposity variations among hypothyroid and hyperthyroid
patients. Probable sampling error could not be determined
due to convenient sampling; however, all the consultations
with the specialists during the study were included in the
sample. Furthermore, it could not evaluate the body adiposi-
ity risk to thyroid dysfunction as the study does not include
the control group. However, the study highlights one of
the important possible associations of body fat with hypo-
thyroid, not just water retention.

Conclusion

The study highlights one of the important concerns of
thyroid dysfunction management related to nutritional
health. Hypothyroid patients have higher chances to develop
cardiometabolic complications because of higher adiposity
deposition. Meanwhile, proper dietary intake or supple-
ments in the course of thyroid dysfunction treatment are
important as they can complicate the thyroid dysfunction
patients with other associated comorbidities. More in-depth
case controls studies may be necessary to affirm the conclu-
sion. However, diet management and socioeconomic inter-
vention could effectively promote thyroid health problems in
general and in Manipur.

Ethical Approval and Informed Consent

This study was ethically approved by Institutional Human
Ethical Clearance Committee, Manipur University (Ref.
No. MU/IHEC/2020/017).

Financial Disclosure

The authors do not have any financial relationships rele-
vant to this article to disclose.

Authors’ Contribution

KhD-B conceptualized and designed the study, collected
the data, critically reviewed, and drafted the manuscript;
SYM coordinated and supervised paper drafting and
revised for important intellectual content and participat-
ed in the analytical framework for the study. JB and AL
worked in identifying the thyroid patients. All authors
read and approve the final version of the manuscript to be
published.

Conflict of Interest

None declared.

Acknowledgments

The authors would like to thank all the staff of Zion Clinic,
Tuibong and the Shija Breast, and Thyroid Clinic staff, Shija
Hospitals, and all the participants in the study.

References

1. Khan A, Khan MMA, Akhtar S. Thyroid disorders, etiology and
2. Corbetta S, Englaro P, Giambona S, Persiani L, Blum WF, Beck-
Pecoz P. Lack of effects of circulating thyroid hormone levels on
serum leptin concentrations. Eur J Endocrinol 1997;137(06):
659–663
3. Hoogwerf BJ, Nuttall FQ. Long-term weight regulation in treated
963–970
following treatment of hyperthyroidism—a forgotten tale. Clin
Obes 2019;9(05):e12328
5. Åsvold BO, Bjøro T, Vatten LJ. Association of serum TSH with high
body mass differs between smokers and never-smokers. J Clin
Endocrinol Metab 2009;94(12):5023–5027
function to body weight: cross-sectional and longitudinal obser-
(06):587–592
thyroid function may be important for body mass index and the
occurrence of obesity in the population. J Clin Endocrinol Metab
2005;90(07):4019–4024
8. Nyrnes A, Jorde R, Sundsfjord J. Serum TSH is positively associated
with BMI. Int J Obes 2006;30(01):100–105
Relationship between obesity and thyroid function in adults.
Marmara Med J. 2018;31(02):76–80
10. Svare A, Nilsen TIL, Bjøro T, Åsvold BO, Langhammer A. Serum TSH
related to measures of body mass: longitudinal data from the
HUNT Study, Norway. Clin Endocrinol (Oxf) 2011;74(06):
769–775
11. Raatikainen K, Heiskanen N, Heinonen S. Transition from over-
weight to obesity worsens pregnancy outcome in a BMI-depen-
dent manner. Obesity (Silver Spring) 2006;14(01):165–171
12. Unnikrishnan AG, Menon UV. Thyroid disorders in India: an
epidemiological perspective. Indian J Endocrinol Metab 2011;
15(6, Suppl 2):S78–S81
gov/epiinfo/index.html
dysfunction among female patients, attending a multispeciality
Body Adiposity Association with Thyroid Dysfunction Baite et al.