J Knee Surg 2022; 35(06): 607-618
DOI: 10.1055/s-0042-1745740
Special Focus Section

Management of Pathologic Fractures around the Knee: Part 1—Distal Femur

John R. Martin
1   Department of Orthopaedic Surgery, University of Arizona College of Medicine, Phoenix, Arizona
,
1   Department of Orthopaedic Surgery, University of Arizona College of Medicine, Phoenix, Arizona
,
Michael D. Duran
2   The Center for Orthopedic Research and Eduction (CORE) Institute, Phoenix, Arizona
,
Amalia M. de Comas
1   Department of Orthopaedic Surgery, University of Arizona College of Medicine, Phoenix, Arizona
2   The Center for Orthopedic Research and Eduction (CORE) Institute, Phoenix, Arizona
,
David J. Jacofsky
2   The Center for Orthopedic Research and Eduction (CORE) Institute, Phoenix, Arizona
› Author Affiliations
Funding None.

Abstract

Pathologic fractures secondary to metastatic disease are an increasingly prevalent problem. Such patients require multidisciplinary collaboration to optimize clinical outcomes. An established algorithm for clinical, laboratory, and radiographic work-up will ensure that each patient achieves the best outcome while avoiding catastrophic complications. Metastatic disease to the region of the knee is less commonly encountered than in other regions of the body, but it presents unique difficulties that merit discussion. Part one of this two-part article series will discuss the appropriate work-up of patients with suspected or impending pathologic fracture of the distal femur, highlight biopsy principles, address perioperative nonsurgical treatments that will optimize patient outcomes, and discuss available surgical treatment modalities.



Publication History

Received: 02 December 2021

Accepted: 16 February 2022

Article published online:
08 April 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 The American Cancer Society. Key statistics about bone cancer. Accessed January 1, 2022 at: https://www.cancer.org/cancer/bone-cancer/about/key-statistics.html
  • 2 DiCaprio MR, Murtaza H, Palmer B, Evangelist M. Narrative review of the epidemiology, economic burden, and societal impact of metastatic bone disease. Ann Joint 2021; DOI: 10.21037/aoj-20-977.
  • 3 Surveillance, Epidemology and End Results (SEER) Program (www.seer.cancer.gov) SEER*Stat Database: Incidence - SEER Research Data, 9 Registries, Nov 2020 Sub (1975–2018) - Linked To County Attributes - Time Dependent (1990–2018) Income/Rurality, 1969–2019 Counties, National Cancer Institute, DCCPS, Surveillance Research Program, released April 2021, based on the November 2020 submission. Available at: https://seer.cancer.gov/statfacts/html/bones.html
  • 4 Abrams HL, Spiro R, Goldstein N. Metastases in carcinoma; analysis of 1000 autopsied cases. Cancer 1950; 3 (01) 74-85
  • 5 Coleman RE. Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev 2001; 27 (03) 165-176
  • 6 Lote K, Walløe A, Bjersand A. Bone metastasis. prognosis, diagnosis and treatment. Acta Radiol Oncol 1986; 25 (4-6): 227-232
  • 7 Coleman RE. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 2006; 12 (20, pt. 2): 6243s-6249s
  • 8 Ward WG, Holsenbeck S, Dorey FJ, Spang J, Howe D. Metastatic disease of the femur: surgical treatment. Clin Orthop Relat Res 2003; (415, suppl) S230-S244
  • 9 Swanson KC, Pritchard DJ, Sim FH. Surgical treatment of metastatic disease of the femur. J Am Acad Orthop Surg 2000; 8 (01) 56-65
  • 10 Gainor BJ, Buchert P. Fracture healing in metastatic bone disease. Clin Orthop Relat Res 1983; (178) 297-302
  • 11 Willeumier JJ, van der Linden YM, van de Sande MAJ, Dijkstra PDS. Treatment of pathological fractures of the long bones. EFORT Open Rev 2017; 1 (05) 136-145
  • 12 Soldatos T, Chalian M, Attar S, McCarthy EF, Carrino JA, Fayad LM. Imaging differentiation of pathologic fractures caused by primary and secondary bone tumors. Eur J Radiol 2013; 82 (01) e36-e42
  • 13 Jacofsky DJ, Haidukewych GJ. Management of pathologic fractures of the proximal femur: state of the art. J Orthop Trauma 2004; 18 (07) 459-469
  • 14 Hamaoka T, Madewell JE, Podoloff DA, Hortobagyi GN, Ueno NT. Bone imaging in metastatic breast cancer. J Clin Oncol 2004; 22 (14) 2942-2953
  • 15 Ratasvuori M, Wedin R, Hansen BH. et al. Prognostic role of en-bloc resection and late onset of bone metastasis in patients with bone-seeking carcinomas of the kidney, breast, lung, and prostate: SSG study on 672 operated skeletal metastases. J Surg Oncol 2014; 110 (04) 360-365
  • 16 Satcher RL, Lin P, Harun N, Feng L, Moon BS, Lewis VO. Surgical management of appendicular skeletal metastases in thyroid carcinoma. Int J Surg Oncol 2012; 2012: 417086
  • 17 Rougraff BT, Kneisl JS, Simon MA. Skeletal metastases of unknown origin. A prospective study of a diagnostic strategy. J Bone Joint Surg Am 1993; 75 (09) 1276-1281
  • 18 Vinholes J, Coleman R, Eastell R. Effects of bone metastases on bone metabolism: implications for diagnosis, imaging and assessment of response to cancer treatment. Cancer Treat Rev 1996; 22 (04) 289-331
  • 19 Kotian RN, Puvanesarajah V, Rao S, El Abiad JM, Morris CD, Levin AS. Predictors of survival after intramedullary nail fixation of completed or impending pathologic femur fractures from metastatic disease. Surg Oncol 2018; 27 (03) 462-467
  • 20 Vakili Sadeghi M, Sedaghat S. Is 99m Tc-methylene diphosphonate bone scintigraphy a sensitive method for detecting bone lesions in multiple myeloma?. Caspian J Intern Med 2018; 9 (02) 140-143
  • 21 Ito S, Kato K, Ikeda M. et al. Comparison of 18F-FDG PET and bone scintigraphy in detection of bone metastases of thyroid cancer. J Nucl Med 2007; 48 (06) 889-895
  • 22 Datir A, Pechon P, Saifuddin A. Imaging-guided percutaneous biopsy of pathologic fractures: a retrospective analysis of 129 cases. AJR Am J Roentgenol 2009; 193 (02) 504-508
  • 23 Pohlig F, Kirchhoff C, Lenze U. et al. Percutaneous core needle biopsy versus open biopsy in diagnostics of bone and soft tissue sarcoma: a retrospective study. Eur J Med Res 2012; 17: 29
  • 24 Hau A, Kim I, Kattapuram S. et al. Accuracy of CT-guided biopsies in 359 patients with musculoskeletal lesions. Skeletal Radiol 2002; 31 (06) 349-353
  • 25 Rimondi E, Staals EL, Errani C. et al. Percutaneous CT-guided biopsy of the spine: results of 430 biopsies. Eur Spine J 2008; 17 (07) 975-981
  • 26 Dupuy DE, Rosenberg AE, Punyaratabandhu T, Tan MH, Mankin HJ. Accuracy of CT-guided needle biopsy of musculoskeletal neoplasms. AJR Am J Roentgenol 1998; 171 (03) 759-762
  • 27 Traina F, Errani C, Toscano A. et al. Current concepts in the biopsy of musculoskeletal tumors. J Bone Joint Surg Am 2015; 97 (01) e7
  • 28 Chatziioannou AN, Johnson ME, Pneumaticos SG, Lawrence DD, Carrasco CH. Preoperative embolization of bone metastases from renal cell carcinoma. Eur Radiol 2000; 10 (04) 593-596
  • 29 Pazionis TJ, Papanastassiou ID, Maybody M, Healey JH. Embolization of hypervascular bone metastases reduces intraoperative blood loss: a case-control study. Clin Orthop Relat Res 2014; 472 (10) 3179-3187
  • 30 Coleman RE. Skeletal complications of malignancy. Cancer 1997; 80 (8, suppl) 1588-1594
  • 31 Sugiura H, Yamada K, Sugiura T, Hida T, Mitsudomi T. Predictors of survival in patients with bone metastasis of lung cancer. Clin Orthop Relat Res 2008; 466 (03) 729-736
  • 32 Woodward E, Jagdev S, McParland L. et al. Skeletal complications and survival in renal cancer patients with bone metastases. Bone 2011; 48 (01) 160-166
  • 33 Hemminki K, Riihimäki M, Sundquist K, Hemminki A. Site-specific survival rates for cancer of unknown primary according to location of metastases. Int J Cancer 2013; 133 (01) 182-189
  • 34 Saad F, Lipton A, Cook R, Chen Y-M, Smith M, Coleman R. Pathologic fractures correlate with reduced survival in patients with malignant bone disease. Cancer 2007; 110 (08) 1860-1867
  • 35 Sonmez M, Akagun T, Topbas M. et al. Effect of pathologic fractures on survival in multiple myeloma patients: a case control study. J Exp Clin Cancer Res 2008; 27: 11
  • 36 Adami S, Mian M. Clodronate therapy of metastatic bone disease in patients with prostatic carcinoma. Recent Results Cancer Res 1989; 116: 67-72
  • 37 Liu J, Huang W, Zhou R. et al. Bisphosphonates in the treatment of patients with metastatic breast, lung, and prostate cancer: a meta-analysis. Medicine (Baltimore) 2015; 94 (46) e2014
  • 38 Mhaskar R, Kumar A, Miladinovic B, Djulbegovic B. Bisphosphonates in multiple myeloma: an updated network meta-analysis. Cochrane Database Syst Rev 2017; 12: CD003188
  • 39 Paterson AH. Should bisphosphonates be standard therapy for bone pain?. Support Care Cancer 1997; 5 (03) 200-204
  • 40 Vinholes JJ, Purohit OP, Abbey ME, Eastell R, Coleman RE. Relationships between biochemical and symptomatic response in a double-blind randomised trial of pamidronate for metastatic bone disease. Ann Oncol 1997; 8 (12) 1243-1250
  • 41 Lipton A, Fizazi K, Stopeck AT. et al. Superiority of denosumab to zoledronic acid for prevention of skeletal-related events: a combined analysis of 3 pivotal, randomised, phase 3 trials. Eur J Cancer 2012; 48 (16) 3082-3092
  • 42 Body J-J, Bone HG, de Boer RH. et al. Hypocalcaemia in patients with metastatic bone disease treated with denosumab. Eur J Cancer 2015; 51 (13) 1812-1821
  • 43 Dupuy DE, Liu D, Hartfeil D. et al. Percutaneous radiofrequency ablation of painful osseous metastases: a multicenter American College of Radiology Imaging Network trial. Cancer 2010; 116 (04) 989-997
  • 44 Callstrom MR, Dupuy DE, Solomon SB. et al. Percutaneous image-guided cryoablation of painful metastases involving bone: multicenter trial. Cancer 2013; 119 (05) 1033-1041
  • 45 Roscoe MW, McBroom RJ, St Louis E, Grossman H, Perrin R. Preoperative embolization in the treatment of osseous metastases from renal cell carcinoma. Clin Orthop Relat Res 1989; (238) 302-307
  • 46 Mioc M-L, Prejbeanu R, Vermesan D. et al. Deep vein thrombosis following the treatment of lower limb pathologic bone fractures - a comparative study. BMC Musculoskelet Disord 2018; 19 (01) 213
  • 47 Lin RJ, Green DL, Shah GL. Therapeutic anticoagulation in patients with primary brain tumors or secondary brain metastasis. Oncologist 2018; 23 (04) 468-473
  • 48 Townsend PW, Rosenthal HG, Smalley SR, Cozad SC, Hassanein RE. Impact of postoperative radiation therapy and other perioperative factors on outcome after orthopedic stabilization of impending or pathologic fractures due to metastatic disease. J Clin Oncol 1994; 12 (11) 2345-2350
  • 49 Davis AM, O'Sullivan B, Turcotte R. et al; Canadian Sarcoma Group, NCI Canada Clinical Trial Group Randomized Trial. Late radiation morbidity following randomization to preoperative versus postoperative radiotherapy in extremity soft tissue sarcoma. Radiother Oncol 2005; 75 (01) 48-53
  • 50 Greco C, Zelefsky MJ, Lovelock M. et al. Predictors of local control after single-dose stereotactic image-guided intensity-modulated radiotherapy for extracranial metastases. Int J Radiat Oncol Biol Phys 2011; 79 (04) 1151-1157
  • 51 Zelefsky MJ, Greco C, Motzer R. et al. Tumor control outcomes after hypofractionated and single-dose stereotactic image-guided intensity-modulated radiotherapy for extracranial metastases from renal cell carcinoma. Int J Radiat Oncol Biol Phys 2012; 82 (05) 1744-1748
  • 52 Rastogi S, Kumar A, Khan SA. Do locking plates have a role in orthopaedic oncological reconstruction. Arch Orthop Trauma Surg 2010; 130 (12) 1493-1497
  • 53 Umer M, Abbas K, Khan S, Rashid HU. Locking compression plate in musculoskeletal oncology ‘a friend in need’. Clin Orthop Surg 2013; 5 (04) 321-326
  • 54 Gregory JJ, Ockendon M, Cribb GL, Cool PW, Williams DH. The outcome of locking plate fixation for the treatment of periarticular metastases. Acta Orthop Belg 2011; 77 (03) 362-370
  • 55 Uglialoro AD, Maceroli M, Beebe KS, Benevenia J, Patterson FR. Distal femur defects reconstructed with polymethylmethacrylate and internal fixation devices: a biomechanical study. Orthopedics 2009;32(08)
  • 56 Bouma WH, Cech M. The surgical treatment of pathologic and impending pathologic fractures of the long bones. J Trauma 1980; 20 (12) 1043-1045
  • 57 Habermann ET, Sachs R, Stern RE, Hirsh DM, Anderson Jr WJ. The pathology and treatment of metastatic disease of the femur. Clin Orthop Relat Res 1982; (169) 70-82
  • 58 Parratte S, Ollivier M, Argenson J-N. Primary total knee arthroplasty for acute fracture around the knee. Orthop Traumatol Surg Res 2018; 104 (1S): S71-S80
  • 59 Bickels J, Wittig JC, Kollender Y. et al. Distal femur resection with endoprosthetic reconstruction: a long-term followup study. Clin Orthop Relat Res 2002; (400) 225-235
  • 60 Capanna R, Morris HG, Campanacci D, Del Ben M, Campanacci M. Modular uncemented prosthetic reconstruction after resection of tumours of the distal femur. J Bone Joint Surg Br 1994; 76 (02) 178-186
  • 61 Choong PF, Sim FH, Pritchard DJ, Rock MG, Chao EY. Megaprostheses after resection of distal femoral tumors. A rotating hinge design in 30 patients followed for 2-7 years. Acta Orthop Scand 1996; 67 (04) 345-351
  • 62 Frink SJ, Rutledge J, Lewis VO, Lin PP, Yasko AW. Favorable long-term results of prosthetic arthroplasty of the knee for distal femur neoplasms. Clin Orthop Relat Res 2005; 438 (438) 65-70
  • 63 Houdek MT, Wagner ER, Wilke BK, Wyles CC, Taunton MJ, Sim FH. Long term outcomes of cemented endoprosthetic reconstruction for periarticular tumors of the distal femur. Knee 2016; 23 (01) 167-172
  • 64 Johnson JD, Wyles CC, Perry KI, Yuan BJ, Rose PS, Houdek MT. Outcomes of knee arthroplasty for primary treatment of pathologic peri-articular fractures of the distal femur and proximal tibia. Int Orthop 2020; 44 (01) 187-193
  • 65 Myers GJC, Abudu AT, Carter SR, Tillman RM, Grimer RJ. Endoprosthetic replacement of the distal femur for bone tumours: long-term results. J Bone Joint Surg Br 2007; 89 (04) 521-526
  • 66 Alt AL, Boorjian SA, Lohse CM, Costello BA, Leibovich BC, Blute ML. Survival after complete surgical resection of multiple metastases from renal cell carcinoma. Cancer 2011; 117 (13) 2873-2882
  • 67 Baloch KG, Grimer RJ, Carter SR, Tillman RM. Radical surgery for the solitary bony metastasis from renal-cell carcinoma. J Bone Joint Surg Br 2000; 82 (01) 62-67
  • 68 Lin PP, Mirza AN, Lewis VO. et al. Patient survival after surgery for osseous metastases from renal cell carcinoma. J Bone Joint Surg Am 2007; 89 (08) 1794-1801
  • 69 Houdek MT, Wagner ER, Wyles CC. et al. Long-term outcomes of pedicled gastrocnemius flaps in total knee arthroplasty. J Bone Joint Surg Am 2018; 100 (10) 850-856
  • 70 McLynn RP, Ondeck NT, Grauer JN, Lindskog DM. What is the adverse event profile after prophylactic treatment of femoral shaft or distal femur metastases?. Clin Orthop Relat Res 2018; 476 (12) 2381-2388
  • 71 Morishige M, Muramatsu K, Tominaga Y, Hashimoto T, Taguchi T. Surgical treatment of metastatic femoral fractures: achieving an improved quality of life for cancer patients. Anticancer Res 2015; 35 (01) 427-432
  • 72 Van Geffen E, Wobbes T, Veth RP, Gelderman WA. Operative management of impending pathological fractures: a critical analysis of therapy. J Surg Oncol 1997; 64 (03) 190-194
  • 73 Brodowicz T, Hadji P, Niepel D, Diel I. Early identification and intervention matters: A comprehensive review of current evidence and recommendations for the monitoring of bone health in patients with cancer. Cancer Treat Rev 2017; 61: 23-34
  • 74 Howard LE, De Hoedt AM, Aronson WJ. et al. Do skeletal-related events predict overall survival in men with metastatic castration-resistant prostate cancer?. Prostate Cancer Prostatic Dis 2016; 19 (04) 380-384
  • 75 Mirels H. Metastatic disease in long bones: a proposed scoring system for diagnosing impending pathologic fractures. 1989. Clin Orthop Relat Res 2003; (415, suppl) S4-S13
  • 76 El-Husseiny M, Coleman N. Inter- and intra-observer variation in classification systems for impending fractures of bone metastases. Skeletal Radiol 2010; 39 (02) 155-160
  • 77 Howard EL, Shepherd KL, Cribb G, Cool P. The validity of the Mirels score for predicting impending pathological fractures of the lower limb. Bone Joint J 2018; 100-B (08) 1100-1105
  • 78 Damron TA, Nazarian A, Entezari V. et al. CT-based structural rigidity analysis is more accurate than mirels scoring for fracture prediction in metastatic femoral lesions. Clin Orthop Relat Res 2016; 474 (03) 643-651
  • 79 Nazarian A, Entezari V, Villa-Camacho JC. et al. Does CT-based rigidity analysis influence clinical decision-making in simulations of metastatic bone disease?. Clin Orthop Relat Res 2016; 474 (03) 652-659
  • 80 Sternheim A, Giladi O, Gortzak Y. et al. Pathological fracture risk assessment in patients with femoral metastases using CT-based finite element methods. A retrospective clinical study. Bone 2018; 110: 215-220