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Introduction

Stroke is the second largest cause of death after ischemic
heart disease worldwide, with ischemic stroke accounting
for over 70% of cases depending on regional epidemiology.1–3

Currently, thrombolysis with recombinant tissue plasmino-
gen activator and endovascular thrombectomy given in the
hyperacute phase after ischemic stroke onset are still the
only effective therapies.4,5 Due to the narrow therapeutic
timewindow and safety concerns, the clinical indications for
thrombolysis andmechanical thrombectomy are limited and
most stroke patients do not receive a specific acute stroke
treatment.6 In fact, so far no specific therapies have been
proven efficient when administrated beyond 24hours after
stroke onset. Post-ischemic inflammation, which persists for
a prolonged timeperiod ofdays toweeks after stroke onset, is
considered a potential strategy in expanding the time frame
for treatment. The immune system has been consistently
proven to play a critical role in stroke pathophysiology.7,8

Therefore, inflammatory mediators and immune cells have

received increasing attention as promising therapeutic tar-
gets for stroke treatment.

The Neuroinflammatory Response to Stroke

After the onset of ischemic stroke, the lack of oxygen and
energy failure in the ischemic tissue triggers a series of
deleterious cellular andmolecular events.9 In the acute phase,
blood platelets adhere and become activated at the site of
ischemic vascular injury. Activated platelets interact with T
cells and neutrophils to promote thrombus formation and
trigger thromboinflammation through the activation of the
kallikrein–kinin system.10,11 As the ischemic cascade pro-
gresses, brain cells undergo necrosis in the injured area and
release various intracellular components into the extracellular
space. Danger-associated molecular patterns (DAMPs) are a
diverse group of immunoactive molecules, including high-
mobility group box 1 (HMGB1), adenosine triphosphate (ATP),
nucleic acids, and peroxiredoxin (Prx) family proteins as well
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Abstract Translational stroke research has long been focusing on neuroprotective strategies to
prevent secondary tissue injury and promote recovery after acute ischemic brain injury.
The inflammatory response to stroke has more recently emerged as a key pathophysi-
ological pathway contributing to stroke outcome. It is now accepted that the
inflammatory response is functionally involved in all phases of the ischemic stroke
pathophysiology. The immune response is therefore considered a breakthrough target
for ischemic stroke treatment. On one side, stroke induces a local neuroinflammatory
response, in which the inflammatory activation of glial, endothelial and brain-invading
cells contributes to lesion progression after stroke. On the other side, ischemic brain
injury perturbs systemic immune homeostasis and results in long-lasting changes of
systemic immunity. Here, we briefly summarize current concepts in local neuro-
inflammation and the systemic immune responses after stroke, and highlight two
promising therapeutic strategies for poststroke inflammation.
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as many other nuclear and cytoplasmic molecules, which are
important triggers for sterile inflammation after tissue inju-
ry.12 DAMPS are secreted from necrotic and stressed cells but
also actively secreted from immune cells as well as the
endothelium and neurons.12 These danger signals activate
purinergic receptors and pattern recognition receptors
(PRRs), suchasToll-like receptors (TLRs), receptor foradvanced
glycation end-products, and scavenger receptors, which are
widely expressed on immunocompetent brain cells such as
microglia, border-associated macrophages, and brain endo-
thelial cells.13,14 In murine stroke models, ATP, HMGB1, and
Prx familyproteinsaremajorDAMPs involved inpost-ischemic
inflammation.15–17 High levels of extracellular nucleotides
(ATP, UTP) released from injured brain cells are recognized
by purinoceptors and function as “find-me” signals for phago-
cytic cells.18 HMGB1, an intracellular DNA-binding protein, is
released early after stroke and its plasma concentrations
remain elevated for months after stroke.19 Recognized by
several membrane-bound and intracellular PRRs, HMGB1 is
a potent mediator of sterile inflammation which can result in
various disease-relevant pathophysiological processes such as
cytokine-induced sickness behavior, leakage of the blood–
brain barrier (BBB), and activation/recruitment of systemic
immune cells.20–22 Similar to HMGB1, Prx family proteins
released from necrotic cells trigger the production of inflam-
matory cytokines and promote the activation of infiltrating
macrophages through activation of PRR pathways.16,23,24 In
addition, other endogenous molecules from damaged tissues,
such as nucleic acids, lipids, and extracellular matrix, can also
be recognized by PRRs and induce a sterile inflammatory
response.13,14

Microglia and astrocytes are the key brain resident cell
population which participate in the initial inflammatory
response to the ischemic brain injury. Activated microglia
undergo a rapid phenotypic change toward a reactive cell state
and promote further inflammatory response.25 Activated
microglia develop a de-ramifiedmorphologywith significant-
ly enhancedmigratory capacity, phagocytosis, and production
of proinflammatory mediators.25 During the early phase after
stroke, microglia remove cellular debris from damaged tissue
through phagocytosis mediated by receptors, including TLRs,
triggering receptor expressed on myeloid cells 2 (TREM2),
purinergic receptors, and the Tyro3, Axl, and Mer (TAM)
tyrosine receptor kinases.26,27 Yet, the ischemic activation of
microglia canalso inducea further inflammatoryexacerbation
of lesion progression by various deleterious mechanisms.
Reactive microglia not only phagocytose necrotic cells but
also engulf surviving neurons in the perilesional tissue-at-
risk.28 Additionally, perivascular microglia have been demon-
strated to engulf vascular endothelial cells which can further
promote dysfunction of cerebrovascular integrity.29DAMPs in
the extracellular space result via activation of PRRpathways in
the increasedsecretionofcytokinesandchemokinesbymicro-
glia. On onehand, activatedmicroglia release large amounts of
proinflammatory mediators that contribute to neuronal apo-
ptosis, and signals that recruit peripheral immune cells to
exacerbate inflammation. On the other hand, microglia pro-
duce various anti-inflammatory mediators and neurotrophic

factors that play an important role in neurogenesis, particu-
larly in the tissue repair process during the chronic phase after
ischemia.30,31 Overall, activated microglia perform a complex
and diverse role in the inflammatory response following
cerebral ischemia; many studies have substantiated this
“dual function.” However, a recent study proposes that an
absence of microglia leads to dysregulated neuronal network
activity and results in exacerbated stroke outcome, which
implies neuroprotective function of microglia despite the
plethora of inflammatory cytokines they produce.32

Astrocytes, the most abundant glial cells in the brain,
are activated in response to signals released from damaged
neurons or activated microglia and undergo reactive astro-
gliosis after ischemic stroke. Reactive astrocytes form a
glial scar in the peri-infarct area, which isolates the lesion
and restricts the spread of neuroinflammation but also
hinders axonal regeneration.33 Reactive astrocytes cross-
talk with microglia to enhance the inflammatory response,
and produce various proinflammatory mediators and free
radicals that cause severe secondary damage to neu-
rons.33,34 However, reactive astrocytes also show neuro-
protective effects by releasing neurotrophic factors, taking
up extracellular excitotoxic glutamate, releasing antioxi-
dant endogenous glutathione, and stabilizing extracellular
fluid and ionic homeostasis.35–38 Moreover, astrocytes are
essential for maintaining vascular integrity and correct
function of the BBB. The astrocytic endfeet wrap around
blood vessels and are tightly attached to the outer surface
of the basal lamina.39 However, in turn, cytokines and
matrix metalloproteinases produced by pericapillary
astrocytes result in dysfunction of BBB and vasogenic
edema after the ischemic insult.40,41 Thus, similar to
microglial cells, reactive astrocytes also exert a dualistic
role in the immune responses to stroke.

As another functional component of the BBB, the cerebral
endothelium is an important component of the inflammato-
ry reaction after stroke. Since their unique position at the
boundary between blood circulation and brain parenchyma,
endothelial cells play a vital role in initiating and regulating
the recruitment of peripheral inflammatory cells after
stroke.39 When stimulated either directly by hypoxia,
DAMPs, or cytokines derived from immune cells, endothelial
cells express substances with vasoactive and proinflamma-
tory properties as well as upregulate cell-adhesion mole-
cules (CAMs) which can facilitate the recruitment of
circulating leukocytes to the injured brain.42 Among the
large group of CAMs, three groups of CAMs have been shown
to be particularly relevant for the transvascular leukocyte
invasion at the BBB: selectins (p-selectin, e-selectin, and l-
selectin), cellular adhesion molecules (ICAM-1 and -2,
VCAM-1, and PECAM-1), and integrins.43 Selectins have
been shown to mediate the initial cell–cell adhesion and
rolling of leukocytes on the endothelium, while leukocyte
integrins interact with cellular adhesion molecules
expressed on endothelial cells to make firm attachment
and induce the transmigration.44 Previous studies have
demonstrated that inhibition or deficiency of adhesion mol-
ecules leads to decreased intracerebral leukocyte
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accumulation, reducing ischemic injury, and improving neu-
rological outcome.45–47

The recruitment of peripheral leukocytes to the injured
brain after stroke occurs in a well-orchestrated manner with
distinct kinetics for the different leukocyte subpopula-
tions.48 Myeloid cells (monocytes and neutrophils) are
recruited to the injury site within hours after stroke. They
are involved in the inflammatory response through phago-
cytosis of necrotic cell debris and production of cytokines
and chemokines. This early cerebral leukocyte accumulation,
together with reactive microglia, releases proinflammatory
cytokines that stimulate endothelial cells to upregulate
adhesion molecules, thereby facilitating further leukocyte
influx to the brain parenchyma.49,50 Activated neutrophils
produce inflammatory factors which exacerbate endothelial
damage and neuronal cell death. As the neuroinflammatory
reaction aggravates, dendritic cells increase in the brain
parenchyma.48 Compared with these innate immune cell
populations, lymphocytes infiltrate with delayed kinetics
after only several days but can then persist for more than
30 days in the injured brain.48,51 The first T cell subset
invading the ischemic tissue are CD8þ cytotoxic T cells,
which cause neuronal death and exacerbation of brain
damage.52,53 Most infiltrated T cells are CD4þ helper T cells,
which differentiate into different subtypes (e.g., Th1, Th17,
or Treg) and then produce pro- or anti-inflammatory cyto-
kines.48,54 Despite the relatively small number of T cells
compared with innate immune cells in the brain, this cell
population has been consistently demonstrated to be amajor
contributor to stroke pathophysiology.55,56 Infiltrating help-
er T cells that acquire either the Th1 or Th17 proinflamma-
tory phenotypes after stroke exhibit detrimental effects of
aggravating brain injury by secreting proinflammatory cyto-
kines, including interleukin (IL)-2, IL-17, IL-23, and interfer-
on-γ.47,54 In contrast, regulatory T cells show a protective
role in neuroinflammation at a more delayed stage through
the secretion of anti-inflammatory factors and cell–cell
contact-dependent mechanisms.57–59 Therefore, it is very
likely that future therapeutic approaches targeting only
cellular subpopulations (such as pro- versus anti-inflamma-
tory T cells) or specific inflammatory mechanisms (such as
neutralizing proinflammatory T cell cytokines) would be
more efficient than the previously tested approaches aiming
to rather nonspecifically block the—at least in part seemingly
beneficial—neuroinflammatory response to stroke.

Systemic Immunity in Stroke

In addition to the local neuroinflammatory response to
tissue injury in the brain, stroke causes also a profound
alteration in systemic immune homeostasis. The systemic
immune response to stroke can be divided into several
phases with a distinct immunological phenotype ranging
from early immune activation to subsequent immunosup-
pression and chronic low-grade inflammation. In the
hyperacute phase of cerebral ischemia, the peripheral
immune system is over-activated and characterized by a
rapid and extensive increase in cytokines from activated

splenocytes and lymphoid tissue.60 Moreover, stroke acti-
vates hematopoietic stem cells in the bone marrow, lead-
ing to a myeloid-biased emergency hematopoiesis and an
increasing output of neutrophils and inflammatory mono-
cytes to the circulation.61,62 However, this early activation
of systemic immunity lasts only for 1 to 2 days before
severe systemic immunosuppression occurs. Immunosup-
pression in the subacute phase after ischemia is charac-
terized by lymphopenia, reduced functional activity of
monocytes, and splenic atrophy.63,64 These immunologi-
cal changes make patients susceptible to infections, which
is a key factor to the morbidity and mortality of stroke
patients during the first month after stroke.65 Over-acti-
vation of the immune system in the hyperacute stage of
stroke results in functional exhaustion of mature mono-
cytes which leads to apoptosis of lymphocytes.17 We have
recently demonstrated that the activation of innate im-
mune cells via brain-released alarmins and activation of
the inflammasome complex in circulating cells is the
mechanistic link between early immune activation and
subsequent lymphopenia.17,66 In the chronic phase after
stroke, systemic immune dysfunction can still be ob-
served for several months.19 The low-grade chronic in-
flammation can also be observed in stroke patients as a
sustained increase in inflammatory blood biomarkers
such as C-reactive protein, IL-6, IL-8, and tumor necrosis
factor-α.67–69 The persistence of inflammatory factors is
associated with cognitive decline and stroke recurrence in
patients. Moreover, a long-term increase in circulating
leukocytes and changes of lymphocyte subsets are found
for several months after stroke.19,70 Considering that
stroke patients are in a large proportion multimorbid
patients with several comorbidities such as atherosclero-
sis, diabetes, hypertension, and others, the contribution of
the long-term chronic inflammation to underlying comor-
bidities, the development of poststroke complications,
and poststroke recovery warrants an in-depth analysis
of currently unknown mechanisms and therapeutic
targets.

From Bench to Bedside: Therapeutic
Strategies

As far as the current status of ischemic stroke treatment is
concerned, effective therapies to treat the acute phase and
prevent recurrent events are still very limited. Although many
molecules have been reported to be neuroprotective in experi-
mental stroke models, all of them have to date failed to
clinically improve neurological outcomes in clinical trials.
Despite this so far failed translation of primarily neuroprotec-
tive agents, many potential strategies are currently under
investigation for stroke treatment, particularly those targeting
neuroinflammation in stroke. Accumulating evidence suggests
that inhibition of neuroinflammation in the brain has a benefi-
cial effect for stroke outcome. It has been demonstrated that
blockade of lymphocyte trafficking reduces infarct volumeand
thus improves stroke outcomes in experimental stroke mod-
els.47,71However, several clinical trials for drug repurposing of
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compounds alreadywell-established for primary autoimmune
brain disorders have failed to prove clinical efficacy in stroke
patients. Among them, the functional sphingosine-1-phos-
phate (S1P) receptor antagonist FTY720 (fingolimod), an
immunomodulatorydrugestablishedfor treatmentofmultiple
sclerosis by reducing the circulation and cerebral T cell infil-
tration, has attracted great attention. FTY720 significantly
reduced ischemic damage and neurological deficits, and pro-
moted recovery in animal models.72,73 Results from clinical
trials showthatoral administrationofFTY720 for3consecutive
days after stroke onset reduces microvascular permeability,
limits secondary brain injury, and improves neurological out-
come inpatients.74–76Despite the reductionofperipheral T cell
circulation by FTY720, clinical data show that FTY720-treated
patients have relatively mild infection signs that resolved after
a brief treatment of antibiotics. In the meantime, no drug-
related serious adverse events are observed, suggesting that
FTY720 is safe for patients.74,75 Therefore, FTY720 is currently
one of the most promising therapeutic immunomodulatory
drugs for ischemic stroke. However, the actual effectiveness of
FTY720 is closely related to the type of stroke, the timing, and
route of administration. Therefore, larger clinical trials are
required to ultimately confirm its clinical efficacy and safety
for ischemic stroke. Besides this one highlighted example of
clinical trials for FTY720 in stroke, other immunomodulatory
clinical trials have already concluded or are currently under-
going to test the effectiveness of targeting immune cell migra-
tion (e.g., by administration of the CD49-specific antibody
natalizumab), CD18 antagonists to inhibit neutrophil activa-
tion, or use of the immunomodulatory antibiotic minocycline
to reduce microglial activation after stroke.77–79

Recurrent stroke and other ischemic events are major
problems for patients surviving ischemic stroke. Epidemio-
logical data indicate that the stroke recurrence increases
over time. The 1-year recurrence rate of ischemic stroke
ranges from 6 to 12%, while the 5-year recurrence rate rises
to 16 to 22%,80–84 depending on the patients’ age, sex,
comorbidities, and stroke subtype. Standard of care
for secondary prevention in stroke patients is mainly focus-
ing on optimizing treatment of the metabolic syndrome
(obesity, hypertension, diabetes), which is a common co-
morbidity, cardiovascular risk factor, and often cause of
the incident stroke. Therapies for this include antihyper-
tensive, lipid lowering, and thrombocyte aggregation inhib-
iting medication. This treatment has been proven effective
and approved for reducing the long-term risk of recurrent
cardiovascular events (stroke, myocardial infarction, and
death of any cause). However, currently approved second-
ary prevention therapies are only insufficiently preventing
early cardiovascular disease (CVD) recurrence. This
becomes obvious by the fact that the risk for an acute
ischemic event is approximately doubled (hazard ratio:
0.67) in the acute phase after a stroke despite current
standard of care treatment. Epidemiological data from the
Oxfordshire Stroke Project showed indeed that patients
with atherosclerotic stroke incidence had the highest re-
currence rate in the (currently untreated) acute phase (7-
day period) with an odds ratio of 3.3.85

To target this remaining therapeutic window in recurrent
stroke prevention, anti-inflammatory therapies have come
into focus of translational stroke research.86 We have previ-
ously demonstrated that stroke results in exacerbation of
atherosclerotic plaques in experimental stroke models—
probably contributing to early recurrent stroke events—via
the systemic inflammatory response to brain injury.87 These
observations particularly emphasize the possible contribu-
tion of inflammatory mechanisms to early CVD recurrence
after ischemic stroke.

A promising, currently tested approach for reducing CVD
recurrence is the treatment with colchicine—an anti-inflam-
matory drug used for decades, primarily for treatment of
acute gout. Recent meta-analyses provide evidence that
colchicine administration significantly reduces the stroke
risk in patients with high cardiovascular risk.88,89 Colchicine
is a microtubule inhibitor with anti-inflammatory proper-
ties that attenuates inflammasome assembly, IL-1β activa-
tion, inflammatory cell motility, and cytokine secretion.90,91

The ongoing CONVINCE (Colchicine for prevention of Vascu-
lar Inflammation in Non-CardioEmbolic stroke) is a random-
ized phase III clinical trial of secondary stroke prevention
investigating the efficacy and safety of daily low-dose col-
chicine on the prevention of recurrent stroke and major
vascular events. Over 3,000 patients in 17 countries will be
enrolled in CONVINCE, with clinical trials due to be complet-
ed by 2023.92 Despite the obvious medical need to prevent
recurrent ischemic events due to residual inflammatory risk,
no other drug candidates are currently in development for
this indication to the best of our knowledge. To provide novel
candidates and therapeutic targets for this relevant patho-
mechanism, more insights into the mechanisms of systemic
immune modulation after stroke and its impact on post-
stroke comorbidities are required.

Conclusion

Over thepastdecades, therehasbeenamassive increase indata
which improvedour understandingof the immune response to
stroke. The crucial role of immunity in the pathological devel-
opment of stroke has beenwidely recognized and the immune
system has emerged as a key target for therapeutic interven-
tion in stroke (►Fig. 1). Extensive data from clinical and
experimental studies suggest DAMPs released from brain-
injured tissue as initiators of sterile inflammation following
ischemic stroke. These danger-signaling molecules cause
activation of innate immune cells in the brain and recruit-
ment of circulating immune cells, which have a profound
effect on neuronal damage and recovery. A complex and
prolonged systemic immune response induced through the
neuro-immune axis ensues, especially immunosuppression
that may cause life-threatening systemic infections. Many
elements of the immune system have partially opposing
roles in ischemic stroke with both beneficial and deleteri-
ous phenotypes, which may be time-dependent. Targeting
such immunological mechanisms after stroke provides an
expanded time window of opportunity and a wide range of
applications for therapeutic strategies, from improving
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neurological outcomes to reducing poststroke systemic
infections, and preventing cognitive decline. Thus, “single-
target” therapies may be insufficient to deal with the
injuries following ischemia. Effective treatments are most
likely to selectively target several cell types in different
post-ischemic phases to promote protection and recovery.
The ultimate effectiveness of immunomodulatory drugs in
treating stroke will depend on further improving our un-
derstanding of the bidirectional communication between
the central nervous system and the immune system to
design specific and highly efficient therapies.
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