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Abstract Objective As the storage of clinical data has transitioned into electronic formats,
medical informatics has become increasingly relevant in providing diagnostic aid. The
purpose of this review is to evaluate machine learning models that use text data for
diagnosis and to assess the diversity of the included study populations.
Methods We conducted a systematic literature review on three public databases.
Two authors reviewed every abstract for inclusion. Articles were included if they used
or developed machine learning algorithms to aid in diagnosis. Articles focusing on
imaging informatics were excluded.
Results From 2,260 identified papers, we included 78. Of the machine learning
models used, neural networks were relied upon most frequently (44.9%). Studies had a
median population of 661.5 patients, and diseases and disorders of 10 different body
systems were studied. Of the 35.9% (N¼28) of papers that included race data, 57.1%
(N¼16) of study populations were majority White, 14.3% were majority Asian, and
7.1% were majority Black. In 75% (N¼21) of papers, White was the largest racial group
represented. Of the papers included, 43.6% (N¼34) included the sex ratio of the
patient population.
Discussion With the power to build robust algorithms supported by massive quanti-
ties of clinical data, machine learning is shaping the future of diagnostics. Limitations of
the underlying data create potential biases, especially if patient demographics are
unknown or not included in the training.
Conclusion As the movement toward clinical reliance on machine learning acceler-
ates, both recording demographic information and using diverse training sets should
be emphasized. Extrapolating algorithms to demographics beyond the original study
population leaves large gaps for potential biases.
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Background and Significance

The health care industry produced 2.3 trillion gigabytes of
patient data in 2020.1 Computational systems engineered to
solve problems and expose trends create the potential to
advance and expedite the completion of tasks in nearly every
domain. Informatics has the potential towield power beyond
reducing workload with predetermined instructions. Ma-
chine learning algorithms can process data beyond human
capacity, automatically improving themselves with the ad-
dition of new data. Through machine learning, these algo-
rithms internalize patterns that might have otherwise never
been noticed and remained unutilized.

This analysis of large quantities of data is especially
applicable to the health care industry. The increasing rele-
vance of informatics in medicine is reflected by the recent
and near-total adoption of electronic health records (EHRs),
from 9.4% in 2008 to 83.8% in 2015.2 With computerization
has come a wealth of available data for analysis. Both
structured and unstructured data hold powerful informa-
tion, with an estimated 80% of health record information in
the unstructured form.3

One of the most promising applications of machine
learning is to aid in the process of making a diagnosis.
With the almost universal reliance on EHRs, hospitals are
now able to efficiently collect and store comprehensive
patient profiles composed of symptoms, vital signs, family
history, demographic information, medications, lab results,
and more. Though underlying methodologies of different
models vary greatly, machine learning can leverage these
massive quantities of patient data to recognize common
features of impacted patients. By recognizing trends indica-
tive of a particular condition, machine learning can be used
to develop standardized and comprehensive tools to esti-
mate the likelihood that a disease or condition is present.4–6

In many cases, the varied presentation of diseases in patients
and the lack of comprehensive diagnostic parameters make
diagnosis “more of an art than a science”.7 With over 70,000
diagnosis codes for providers to choose from in the Interna-
tional Classification of Diseases tool (ICD-10), the sheer
quantity of information warrants automated assistance.
The potential for machine learning models to recognize
clinically significant patterns and provide data-supported
diagnostic recommendations is promising.

Before these algorithms can be widely implemented, how-
ever, it is important to note the implications of this automated
optimization. Algorithms prioritize the highest predictive
accuracy overall, adapting for the most accurate prediction
in the majority group.8 In a diagnostic context, underrepre-
senting groups in training studies can inhibit the success of the
diagnostic tools on these populations making diversity in the
study population necessary for algorithmic equity.

Objective

The purpose of this review is to evaluate the literature on
machine learning models that use text data to make diagno-
ses and to assess the diversity of the study population.

Methods

Literature Search
An electronic literature search was performed to gather all
papers eligible for inclusion. Three electronic literature data-
bases were utilized: PubMed (MEDLINE), OVID CINAHL, and
ISI Web of Science.9–11 All search terms were defined as
Medical Subject Headings (MeSH) in PubMed and as key-
words in OVID CINAHL and ISIWeb of Science. All MeSH term
searches included result-related terminology, such as singu-
lar root words. In OVID CINAHL and ISI Web of Science,
asterisks were used to search via the word stem. All search
timelines began at database instantiation. PubMed search
results included results available through July 7th 2020 and
OVID CINAHL and ISIWeb of Science through July 13th, 2020.
Search results included papers only if they contained terms
in both of the two necessary concept groupings, machine
learning, and diagnosis. We excluded papers with image-
based analysis. Papers including terms (1) AND (2) but NOT
(3) were eligible for review.

1. Machine learning OR related terms: neural networks,
natural language processing, OR knowledge bases.

2. Diagnosis, computer assisted OR clinical decision-making.
3. Diagnostic imaging OR computer-assisted image

processing.

Review of Identified Studies
Only papers using machine learning for diagnosis were
included. Any models constructed to identify patients with
a new illness or problem were considered diagnostic. Quali-
fying studies also relied entirely or predominantly on text-
based data. Papers that analyzed text-based reports, even if
referring to image content like radiological notes, were
included. Papers that included nontext aspects as one com-
ponent of a larger analysis that was overall text based were
also eligible for inclusion. For example, a paper that included
electrocardiogram analysis would not be excluded if it also
included a significant analysis of other features that were
text based.

Papers were excluded if they relied upon data that are
not readily available in standard EHRs. Papers that focused
on the specialized analysis of any nontext-based component
were also excluded. Components of this nature included
electrocardiogram, electroencephalogram, pathology, geno-
mic, or any image-based analysis. Papers that predicted
disease progression or anticipated the success of a treat-
ment were also excluded. For example, papers that pre-
dicted the severity of disease symptoms or provided
recommendations based on medication were excluded.
Papers that used animal models or were written in lan-
guages other than English were excluded. Papers that
provided an overview of the topic but did not apply a model
to a clinical dataset were reviewed for additional references
but not included. Inclusion and exclusion criteria are listed
in ►Table 1.

From the papers identified, the titles and abstracts of each
were extracted for review. Two independent reviewers (L.F.
and J.W.D) assessed each article for inclusion. Disagreements
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were resolved by a third reviewer (M.D.). Full text papers
were discussed, and inclusion was resolved by consensus.

Data Collection
One reviewer extracted the following data from each includ-
ed paper: study year, location, disease studied, number of
patients, sex ratio of patients, patient race, type of trial, type
of text analyzed, data source, algorithms used, type of
validation test, performance measures, and primary
and secondary outcomes. For papers where the data were
obtained from a different location than the study took place,
the location was recorded as the location of study, not the
data source. If multiple institutions were cited, the primary
institution was recorded. It was also noted if each of the
studies was completed at an academic medical center and if
the disease studied was sex specific. We reached out to
authors of papers that lacked demographic information to
fill in any gaps. If no response was received after 2 weeks, a
follow-up email was sent. If available, an email request was
also sent to an alternate author or address.

Analysis
Data were grouped into bins to analyze and present. Studies
were grouped by country, year, and the disease studied.
Diseases were grouped by the body system they most
impacted, and categorizations were reviewed by a physician
(MD). Racial groups Caucasian and African American are
included in “White” and “Black” groupings, respectively.
For each paper, the four racial groups with the highest
frequency were listed, and papers that listed additional
groups were specified.

Cohen’s kappa statistic was calculated to assess agree-
ment among reviewers. The sample population size was
calculated using median and interquartile scores. In many
studies, data for race and gender were limited. If numerical
values in these categories were not reported, incomplete
data such as qualitative phrases, information estimated by
authors, or data from only part of the study population were
also included.

Results

Review of Identified Studies
A total of 2,260 papers were obtained from the literature
keyword search (►Fig. 1). The PubMed search contributed

1,208, CINAHL 673, and ISI Web of Science 379 papers. After
removal of duplicates and papers that did not meet the
criteria, 78 studies were included. Cohen’s kappa value was
0.26, and there was 91.3% agreement across
reviewers.12,13 ►Table 2 includes the characteristics of all
included studies.14–91

►Fig. 2 displays the number of studies grouped by publi-
cation year. From 1991 through 2014, no more than three
studies were published in any year. The total number of
published studies is highest in the years 2018 and 2019, with
11 and 17 studies published in each year, respectively. The
number of studies per year was displayed only through 2019,
as we stopped collecting studies only partway through 2020.

Data Collection

Study Location
Papers from a total of 21 different countries were included in
the review. A total of 37 (47.4%) of included studies were
from the United States. The countries with the next highest
quantity of studies published were China 5 (6.4%) and the
United Kingdom 4 (5.1%).

Body Systems
Diseases in a total of 10 body systems were studied. Six
papers (7.6%) studied diseases that impacted multiple body
systems. The body system that was included in the highest
quantity of papers was circulatory, with 19 papers
(24.3%). ►Fig. 3 illustrates the body systems studied. Dis-
eases that were studied in multiple papers are listed
in ►Table 3.

Artificial Intelligence
Neural networks were the most frequently relied upon
algorithm type, with use by 35 papers (44.9%). Of the papers
that used neural networks, 19 (54.3%) used backpropagation.
Six papers (17.1%) used multilayer perceptron neural net-
works, five used recurrent neural networks (14.3%), and
three used Bayesian neural networks (8.5%).

Logistic regressionwas used by 19 papers (24.4%), support
vector machine by 12 (15.3%), decision tress by 11 (14.1%),
and natural language processing by 10 (12.8%). Six papers
used Bayesian algorithms (7.7%), with Naïve Bayes usedmost
frequently.

Race
Race datawere initially obtained from the original publication
or the referenced publicly available dataset. When these data
were not available, authorswere contacted via email to obtain
data on the race of the study population. ►Fig. 4 displays the
number of papers with race data available before and after
author contact. In total, race data of some formwere available
from a total of 28 papers (35.9%), including six author estima-
tionsbasedonmemoryor regional locationdata.Of15authors
that responded but did not provide race data, five specified
that they no longer had the data available to them (35.7%),
seven noted that they never obtained it in thefirst place (50%),
and one did not have permission to share the data (7.1%).

Table 1 Inclusion and exclusion criteria for literature articles

Inclusion criteria Exclusion criteria

• Implemented
machine learning

• Diagnostic algorithm
• Utilized text-based

data
• English language

• Focused on
electrocardiogram,
electroencephalogram,
pathology, or genomics

• Analyzed images
• Used animal models
• Predicted disease progression
• Exclusively reviewed other

articles
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Of the 28 papers with race data available, 16 (57.1%) had
patient populations that were predominantly or entirely
White or Caucasian. Additionally, five papers listed a white
or Caucasian percentage as less than half but still greater
than the percentage for any other single group. One paper
provided data for only two categories: Black/African Ameri-
can and Hispanic/Latino. Twenty-one papers (75%) included
the highest percentage of their study group as White or
Caucasian patients. Four study populations were predomi-
nantly or entirely Asian, two were predominantly Black or
African American, and one was predominantly Pacific peo-
ple. One study had a “high proportion” of Hispanic patients,
but no further information was available. On average, study
populations included roughly 13% Black patients and less
than 6% Hispanic or Latino patients.

Sex and Gender
Sex and gender information was obtained from the paper or
accessible dataset when available. When the data were not

available, requests were included in the emails that were
sent for race data information.►Fig. 5 displays the availabil-
ity of gender data before and after contact. Three paperswere
for female-specific diseases: breast and ovarian cancers,
ectopic pregnancies, and cesarian deliveries. These study
populations included exclusively women. Additionally, 90%
of Lupus patients are women, so an author studying this
disease estimated that her study population was roughly
consistent with this ratio.

Of the 45 papers that included sex data for gender-neutral
diseases, 45.5% of study patients were women. ►Table 4

illustrates the percent of papers that included less than
women in their study populations.

Sample Size
Patients with median of 661.5 and interquartile range of
1,945 patients were included in the papers. This number was
taken as the total number of patients, regardless of what
percentage of the data were used for training, testing, and

Fig. 1 Flow diagram of included and excluded studies.
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validation. One study included typical symptoms as deter-
mined by research and physician consult but no specific
patient data.27Whenpatient datawere extracted from larger
databases, only the patients that met the study’s inclusion
criteria were recorded.

Discussion

This literature review demonstrates an increasing utilization
of machine learning for the analysis of text-based health

information. This increase from three studies published from
1991 through 2014 to 11 studies in 2018 and 17 studies in
2019 is consistent with the shift toward reliance on infor-
matics support in health care. As EHRs have become increas-
ingly utilized, informatics has become more relevant in
diagnostics. This is consistent with the rise in the quantity
of papers published on this topic that we found. For diag-
nostics specifically, the availability of data in the form of
EHRs is a driving force for the application of informatics.91

Given this growing prominence, representation in the

Fig. 2 Papers applying text-based machine learning to diagnosis, by data available and publish year 1991 to 2019.

Fig. 3 Number of papers studying disease in each body system.
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development of predictive modeling tools is crucial to the
future equity of medical diagnostics.

Training on large and diverse datasets is essential for the
success of diagnostic models. With a median of 661.5
patients per study, researchers were accurately able to
extract trends from large quantities of text-based data. To
create robust models, however, relying on study populations
with equitable demographic representation is just as rele-
vant as incorporating clinical data from hundreds or thou-
sands of total patients.

Table 3 Diseases and conditions studied in multiple papers

Disease or condition Number of papers

Appendicitis 4

Sepsis and septic shock 4

Autism 3

Heart failure 3

Myocardial infarction 3

Suicide 3

Cardiac arrest 2

Depression 2

Diabetes 2

Sleep apnea 2

Stroke 2

Surgical site infection 2

Tuberculosis 2

Fig. 4 Number of papers with race data included.

Table 4 Percentage of women in populations of included
papers

Population studied Percent of papers

Less than 50% women 59.6

Less than 30% women 20

Fig. 5 Number of papers with gender data included.
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The limited availability of race datawas particularly alarm-
ing.While therewere a variety of reasons that authors did not
provide data, half of those that responded negatively specified
that they never obtained these data at the time of the study.
Despite recentefforts to standardize and enforce the collection
of race data, this information is still chronically inaccurate or
missing in the EHR.92,93 As a result, the lack of race data
provided in the papers might be largely attributed to the
lack of data that were available. While documentation of
race in electronic health care records is improving, it is also
important for researchers to prioritize choosing data setswith
study populations of which they can confirm the diversity.

To correctly report demographic information, researchers
shouldprovidedeidentifieddataandpresent it in anaggregate
form. Additionally, the source of both the data and the classi-
fications used should be clearly specified. Classification cate-
gories should be as specific as possible, and it is understood
that these will vary across different studies and collection
formats. Category and appropriate subcategories should be
listed alphabetically and reported in the results section.94

For the models to be generalizable to the greater popu-
lations, demographic diversity is necessary. Extrapolating to
groups unrepresented in the study population leaves large
gaps for potential biases. When sex, race, and ethnicity
information is lacking, it is difficult to fully understand the
limitations of the algorithm before expanding its use. For
example, risk scores calculated on populations with limited
racial and ethnic diversity have frequently been shown to
perform poorly in diagnosing patients in underrepresented
groups.95–97 These issues are particularly prevalent in ge-
nome-wide association studies, as the body of previous
research and genetic testing is chronically dominated by
White populations.98–100 Though race is not an ideal proxy,
vulnerable populations including immigrants and those of
low socioeconomic status tend to visit multiple health care
facilities, resulting in health data that are more likely to be
fragmented across different systems. In thisway,models that
rely on the quantity of encounter or the presence of an
ordered test can adversely impact vulnerable populations.101

Though there may be circumstances when training on spe-
cific populations rather than a globally representative sam-
ple is appropriate, the demographic make-up should still be
well documented. For the papers that did have race data
available, it was primarily a White population that was
studied. Though the availability of race data is the first
step, the nature of machine learning necessitates diverse
study populations for diagnostic success in diverse patient
populations.

An important distinction should be made between in-
cluding the race of a training population in the descriptive
statistics of a paper and including this feature as a compo-
nent on which the machine learning algorithm relies. The
belief that race accurately indicates genetic difference is
antiquated, and adjusting algorithmic output based on races
runs the risk of perpetuating racial biases already existing in
the medical field.97,102 This does not mean that race should
be neglected altogether. Even independent of a genetic
component, race, gender, and the associated social determi-

nants of health also impact the way that patients experience
disease.103 To ensure that populations are adequately rep-
resented, these factors should be considered in the develop-
ment and evaluation of machine learning algorithms.

It is important that researchers and clinicians understand
how to use and access diagnostic tools.104 The benefits of
providing an accurate diagnosis are diminished if the rec-
ommendations do not have sufficient explanation. Ideally,
the importance of explainable models will increase uptake
and help providers make more informed decisions.105 Mod-
els with limited interpretability, like neural networks, were
relied upon most frequently. Though machine-learning-
based diagnostics are becoming increasingly accurate, reli-
ance onmodels that cannot be fully understood is of growing
concern95,106

This review was limited to inclusion criteria that may not
be representative of the entire breath of machine learning’s
integration into health care. By excluding image-based ap-
plication, the scopewas narrowed; however, by focusing first
on diagnostics, the research can be applied to additional
areas. We did not search outside of peer-reviewed literature,
it is possible that studies from relevant conferences or
congresses were missed. As conferences typically report
incomplete work, the abstracts may not have had an impact
on the results. The evidence in the reviewwas limited by the
availability of information. By contacting authors to provide
additional data, other factors like how responsive a research-
er was or if an email address was up to date came into play.
Factors like this should be understood when considering the
statistic calculated for the sex, race, and race information.

Many reviews of machine learning applications to health
care do exist, yet the literature of this nature focuses largely
on image-based diagnostic applications.107–109 No literature
has been found to study the availability of demographic data
for papers that are both text based and diagnostic.

Conclusion

In summary, this systematic review demonstrated an in-
crease in the application of machine learning to diagnostics
in recent years. As machine learning applications gain mo-
mentum in the diagnostic field, population demographics
should be carefully considered before the data can be
extrapolated.

Clinical Relevance Statement

Decision support tools will continue to play an increasingly
important role in clinical practice. With this, it is critical that
equitable demographic representation is central to the crea-
tion and implementation of these models.

Multiple Choice Questions

1. From and EHR dataset containing records from 3,500
White men, a model is trained to successfully flag poten-
tial cases of kidney disease. What would be a primary
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concern in implementing this tool into real-time clinical
practice?
a. The model would be of little value as kidney disease is

not difficult to diagnose.
b. The model should not be considered for implementa-

tion until it is trained on a diverse population.
c. Men would not benefit from the model as kidney

disease occurs more frequently in women.
d. EHR data cannot be accessed and utilized in this way.

Correct Answer: The correct answer is option b. The
model was trained exclusively on White men. The diver-
sity of a training population is extremely significant in the
generalizability of an algorithm. A model that has only
been trained on White men is valuable to flag kidney
disease in this demographic population, but it would be
unwise to extrapolate the algorithm to different groups
without first training on datasets of these populations.

2. Within the next 5 years, the reliance on artificial intelli-
gence for clinical decision support is expected to:
a. Decrease dramatically
b. Decrease slightly
c. Remain nearly constant
d. Increase

Correct Answer: The correct answer is option d. The
increase in the quantity of papers published on this topic
per year indicates a trend of increasing reliance on
informatics support in health care. As EHRs have become
increasingly utilized, informatics has, andwill continue to
become, more relevant in diagnostics.
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