# $\mathrm{Zn} \mid \mathrm{ZnBr}_{2}$ Catalysed Reaction of Aldehydes with Allylbromide: Synthesis of 2,6-Disubstituted 4-Bromotetrahydropyrans 

## D. O. Biradar ${ }^{\text {a }}$

Y. D. Mane ${ }^{\text {b }}$
Y. P. Sarnikar ${ }^{\text {c }}$
S. G. Kulkarni ${ }^{\text {d }}$
B. V. Subba Reddy ${ }^{\text {a }}$
A. Venkat Narsaiah*a


$R=$ aromatic,
substituted aromatic,
alicyclic, aliphatic
65-85\%
${ }^{\text {a }}$ Organic Synthesis Laboratory, Fluoro-Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007,
Telangana, India
vnakkirala@iict.res.in
vnakkirala2001@yahoo.com
${ }^{\mathrm{b}}$ BSS Arts, Science \& Commerce College, Makni Tq, Lohara-413604,
Osmanabad, MS, India
${ }^{\text {c }}$ Dayanand Science College, Latur-413512, MS, India
${ }^{\mathrm{d}}$ Maharastra Mahavidyalaya, Nilanga-413521, MS, India

Received: 29.06.2022
Accepted after revision: 20.09.2022
Published online: 19.10.2022 (Version of Record)
DOI: 10.1055/s-0042-1751374; Art ID: SO-2022-06-0022-OP
License terms: (cc) $(\$$
© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Abstract An efficient approach for the one-pot synthesis of 4-bromotetrahydropyrans in a highly diastereoselective manner via the alkynylation followed by Prins cyclisation is described. The method employs aldehydes and allyl bromide as reactants, with a $\mathrm{Zn} / \mathrm{ZnBr}_{2}$ catalytic system in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. A variety of 2,6-disubstituted 4-bromotetrahydropyran derivatives were obtained in good yields.

Key words Prins cyclisation, tetrahydropyrans, aldehydes, allylbromides, one-pot reaction

Tetrahydropyrans (THP) are prominent structural motifs in many natural products showing various biological activities. Examples include diospongin A and B , aza-diospongin A, centolobine, diarylheptanoid, catechola-I and II,
the avermectins, aplysiatoxins, oscillatoxins, atrunculins, acutiphycins, kendomycin and phorboxazoles A and B (Figure 1). ${ }^{1,2}$ THP rings are also key moieties in molecules demonstrating antiviral, anti-nociceptive, serotonin norepinephrine transporter inhibitory, antimicrobial and antiproliferative activity. ${ }^{3-5}$ Due to their wide ranging presence, there are various synthetic tactics to afford THPs. ${ }^{6}$ Among those synthetic protocols, the Prins cyclisation has become a pre-eminent tool for the construction of THPs using acidic catalysts for coupling aldehydes and allyl alcohols. ${ }^{7}$

There are relatively few examples in the literature of one-pot formation of THP rings from aldehydes and allyl bromide via Barbier-Prins reactions, ${ }^{8}$ and the reported methods suffer from extended reaction times, low yields and poor stereoselectivity. ${ }^{9}$

Zinc bromide ( $\mathrm{ZnBr}_{2}$ ) is known as a mild, non-toxic, moisture-tolerant, catalyst in organic transformations. ${ }^{10}$ Herein, we demonstrate that $\mathrm{ZnBr}_{2}$ can act as an efficient promoter for one-pot synthesis of 2,6-disubstituted 4-bromotetrahydropyrans in a highly diastereoselective manner via Babier-Prins cyclisation, using allyl bromide and aldehydes as reactants.

$(-)$-Diospongin A

(-)-Diospongin B



Aza-(-)-Diospongin A


Catechol-II, R = H

Figure 1 Bioactive compounds featuring a tetrahydropyran moiety

Initial studies were carried out with benzaldehyde (2 $\mathrm{mmol})$ and allyl bromide ( 1 mmol ) in the presence of $p \mathrm{TSA}$, at room temperature in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The reaction proceeded smoothly, but gave, 2,6-diphenyl-4-bromotetrahydropyran in low yield. Similarly, we have examined the reaction with CSA and $\mathrm{HClO}_{4}-\mathrm{SiO}_{2}$ catalysts separately and observed that conversions took place but yields were very poor. We then turned our attention to Lewis acid catalyst systems such as $\mathrm{Zn} / \mathrm{ZnCl}_{2}$ and $\mathrm{Zn} / \mathrm{ZnBr}_{2}$. While, in the case of $\mathrm{Zn} / \mathrm{ZnCl}_{2}$ reaction, a mixture of products, 2,6-diphenyl-4-bromotetrahydropyran and 2,6-diphenyl-4-chlorotetrahydropyran were formed, with $\mathrm{Zn} / \mathrm{ZnBr}_{2}$, only the desired 2,6-diphenyl-4bromotetrahydropyran was formed in $85 \%$ yield with high diastereoselectivity for the cis-product. The predominant formation of this stereoisomer is most likely due to thermodynamic control. Assignment of the stereochemistry was based on the coupling constants of the protons at the $C_{2}$ and $\mathrm{C}_{4}$ positions. The coupling constants of the benzylic proton $2-\mathrm{H}_{\mathrm{c}}[\delta=4.5(J=11.0 \mathrm{~Hz})]$ and the proton on the carbon bearing the halide group $4-\mathrm{H}_{\mathrm{c}}[\delta=4.0(J=4.5,11.0 \mathrm{~Hz})]$ in the ${ }^{1} \mathrm{H}$ NMR spectrum showed a splitting consistent with two phenyl groups and the halide group being in cis-equatorial orientations, as shown in Scheme 1.
R-CHO

| R=aromatic, |
| :--- |
| substituted aromatic, |
| alicyclic, aliphatic |
| 1a-w |

Scheme $\mathbf{1}$

To determine the role of solvent, we performed the reaction of benzaldehyde in different solvents such as dichloromethane, toluene, acetonitrile, tetrahydrofuran and found that dichloromethane provided the best results (Table 1).

Table 1 Initial Optimization of Reaction Conditions

| Entry | Catalyst | Solvent | Temp. ( ${ }^{\circ} \mathrm{C}$ ) | Time (h) | Yield (\%) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | pTSA | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | 25 | 6 | 60 |
| 2 | CSA | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | 25 | 6 | 55 |
| 3 | $\mathrm{HClO}_{4}-\mathrm{SiO}_{2}$ | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | 25 | 10 | 50 |
| 4 | $\mathrm{ZnCl}_{2}$ | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | 25 | 8 | 50 |
| 5 | $\mathrm{ZnBr}_{2}$ | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | 25 | 6 | 85 |
| 6 | $\mathrm{ZnBr}_{2}$ | toluene | 25 | 12 | 44 |
| 7 | $\mathrm{ZnBr}_{2}$ | $C H_{3} \mathrm{CN}$ | 25 | 8 | 62 |
| 8 | $\mathrm{ZnBr}_{2}$ | THF | 25 | 9 | 56 |

Based on the results obtained with benzaldehyde, we next explored the substrate scope of various substituted aromatic as well as aliphatic aldehydes with allyl bromide to probe the generality of the reaction. Aromatic aldehydes having electron-donating or electron-withdrawing groups on the aromatic ring, reacted readily with allyl bromide to afford the corresponding 2,6-disubstituted 4-bromotetrahydropyrans in 65-85\% yield (Figure 2). However, aliphatic aldehydes and aromatic aldehydes bearing electron-withdrawing groups reacted more smoothly than those having


Figure 2 Reaction scope
electron-donating groups. Notably, this protocol was equally applicable to aliphatic, cyclic, and aromatic aldehydes.

On the basis of experimental results and previous reports, a reaction mechanism for the formation of 2,6-disubstituted 4-bromotetrahydropyrans from allyl bromide and aldehydes can be explained by a tandem carbonyl allyla-tion-hemiacetal formation followed by Prins cyclisation and subsequent bromination (Scheme 2). A rationale for the all cis-selectivity involves formation of an ( $E$ )-oxocarbenium ion via a chair-like transition state, which has increased stability relative to the open oxo-carbenium ion due to delocalization. The optimal geometry for this delocalization of hydrogen atom at $\mathrm{C}_{4}$ in a pseudo-axial position favours equatorial attack of the activated $\pi$-bond nucleophile. ${ }^{11}$


Scheme 2

In conclusion, we have developed a one-pot synthesis of 2,6-disubstituted 4-bromotetrahydropyrans 3a-w from aldehydes and allyl bromide in a highly diastereoselective manner via alkenylation followed by Prins cyclisation, catalysed by $\mathrm{Zn} / \mathrm{ZnBr}_{2}$.

Solvents, aldehydes, allyl bromide and $\mathrm{Zn} / \mathrm{ZnBr}_{2}$ were purchased from a commercial source (Spectrochem) and used as received. Progress of reaction was followed by TLC on silica gel-G plates of $0.5-\mathrm{mm}$ thickness, and spots were visualised by iodine vapour and UV light. Flash column chromatography was performed on silica gel (200-300 mesh). ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded with a Bruker AV 300/400/500 MHz instrument. Chemical shifts are reported in ppm referenced to the residual proton of $\mathrm{CDCl}_{3}$ ( 7.26 ppm for ${ }^{1} \mathrm{H}$ NMR, 77.0 ppm for ${ }^{13} \mathrm{C}$ NMR). ${ }^{1} \mathrm{H}$ NMR data are reported as chemical shift ( ppm ), multiplicity (standard abbreviations), coupling constants (Hz), and integration. ${ }^{13} \mathrm{C}$ NMR data are reported as ppm. HRMS analyses were performed with a Micromass Q-TOF apparatus.

## Synthesis of 2,6-Disubstituted 4-Bromotetrahydropyrans; General Procedure

To a stirred suspension of aldehyde $\mathbf{1 a - w}(2 \mathrm{mmol})$ and Zn dust (4 mmol ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added allyl bromide $\mathbf{2}(1 \mathrm{mmol})$ and the mixture stirred at r.t. for 30 minutes. Then $\mathrm{ZnBr}_{2}$ was added at $0{ }^{\circ} \mathrm{C}$ and the mixture was further stirred for 6-8 hours at r.t., with completion of reaction being confirmed by TLC. The reaction mixture was filtered through a bed of Celite ${ }^{\circledR}$, the filtrate was evaporated, and the residue was triturated with EtOAc ( $2 \times 25 \mathrm{~mL}$ ). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, evaporated un-
der reduced pressure, and purified by column chromatography on silica gel (60-120 mesh), eluting with EtOAc/hexane to afford the corresponding 2,6-disubstituted 4-bromotetrahydropyrans 3a-w.

## 4-Bromo-2,6-diphenyltetrahydro-2H-pyran (3a)

Yield: 268 mg (85\%); colourless solid; mp 86-87 ${ }^{\circ} \mathrm{C}$.
IR (neat): 2928, 2850, 1665, 1590, 1376, 1288, 1166, 1090, 1051, $1011,825,732 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.42-7.20(\mathrm{~m}, 10 \mathrm{H}), 4.54(\mathrm{dd}, J=11.0$, $4.5 \mathrm{~Hz}, 2 \mathrm{H}$ ), $4.40(\mathrm{tt}, J=11.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), $2.55(\mathrm{dd}, J=12.8,4.0 \mathrm{~Hz}, 2$ H), 2.08 ( $q, J=12.1 \mathrm{~Hz}, 2 \mathrm{H}$ ).
${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=141.4,128.4,127.7,125.7,79.7,46.1$, 45.0, 29.6.

MS (EIMS): $m / z(\%)=237[M-B r]^{+}$.
HRMS (EI): m/z [M-Br] calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}$ : 237.45569; found: 237.45570.

## 4-Bromo-2,6-bis(4-bromophenyl)tetrahydro-2H-pyran (3b)

Yield: 399 mg ( $84 \%$ ); colourless solid; $\mathrm{mp} 129-130^{\circ} \mathrm{C}$.
IR (neat): 2958, 2928, 2858, 1901, 1686, 1590, 1486, 1407, 1378, 1290, 1115, 1082, $728 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.48(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.26(\mathrm{~d}, \mathrm{~J}=8.2$ $\mathrm{Hz}, 4 \mathrm{H}), 4.51(\mathrm{~d}, J=11.2,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.39(\mathrm{tt}, J=11.2,4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.52(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.04(\mathrm{q}, J=12.1 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=139.9,131.6,127.4,121.7,78.9,44.7$, 45.2.

MS (EIMS): $m / z(\%)=392[M-B r]^{+}$.
HRMS (EI): $m / z[\mathrm{M}-\mathrm{Br}]^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{Br}_{2} \mathrm{O}$ : 392.94897; found: 392.94767.

## 4-Bromo-2,6-di-p-tolyltetrahydro-2H-pyran (3c)

Yield: 285 mg ( $83 \%$ ); colourless solid; $\mathrm{mp} 92-93^{\circ} \mathrm{C}$.
IR (neat): 3040, 2930, 2820, 1610, 1515, 1465, 1340, 1165, 1050, 955, $777 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.32(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.22(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 4 \mathrm{H}), 4.34(\mathrm{dd}, J=11.2,4.0 \mathrm{~Hz}, 2 \mathrm{H}),, 4.28(\mathrm{tt}, J=11.2,4.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.46 (s, 6 H), 2.20 (dd, $J=12.4,3.6 \mathrm{~Hz}, 2 \mathrm{H}$ ), 1.94 ( $\mathrm{q}, \mathrm{J}=11.8 \mathrm{~Hz}, 2 \mathrm{H}$ ).
${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=141.2,138.6,134.9,129.0,128.2,126.9$, 78.9, 45.6, 44.2, 30.0, 21.4.

MS (EIMS): $m / z(\%)=265[M-B r]^{+}$.
HRMS (EI): $m / z[\mathrm{M}-\mathrm{Br}]^{+}$calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}: 265.26610$; found: 265.26580 .

## 4-Bromo-2,6-bis(4-chlorophenyl)tetrahydro-2H-pyran (3d)

Yield: 321 mg ( $84 \%$ ); colourless solid; $\mathrm{mp} 111-112^{\circ} \mathrm{C}$.
IR (neat): 2958, 2928, 2858, 1901, 1686, 1590, 1486, 1407, 1378, 1290, 1115, 1052, $728 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.32-7.26(\mathrm{~m}, 8 \mathrm{H}), 4.50(\mathrm{dd}, J=9.7,1.2$ $\mathrm{Hz}, 2 \mathrm{H}), 4.36(\mathrm{tt}, J=12.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dd}, J=12.2,4.8 \mathrm{~Hz}, 2 \mathrm{H})$, 2.04 (q, $J=12.2 \mathrm{~Hz}, 2 \mathrm{H}$ ).
${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=139.0,133.5,130.8,129.4,128.6,127.1$, 78.9, 44.7, 45.3, 30.0.

MS (EIMS): $m / z(\%)=305[M-B r]^{+}$.
HRMS (EI): $m / z[\mathrm{M}-\mathrm{Br}]^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{O}$ : 305.05000; found: 305.04989.

## 4-Bromo-2,6-bis(4-isopropylphenyl)tetrahydro-2H-pyran (3e)

Yield: 324 mg (81\%); colourless solid; mp 101-102 ${ }^{\circ} \mathrm{C}$.
IR (neat): 2950, 2821, 2850, 1908, 1680, 1590, 1485, 1407, 1290, 1164, 1082, $728 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.30(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.18(\mathrm{~d}, \mathrm{~J}=7.8$ $\mathrm{Hz}, 4 \mathrm{H}), 4.50(\mathrm{dd}, J=11.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{tt}, J=11.2,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.96-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.54$ (dd, $J=12.2,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.15$ ( $\mathrm{q}, J=12.0,2$ H), 1.24 ( $\mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, 12 \mathrm{H}$ ).
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=146.4,138.9,130.8,128.4,127.2,125.8$, 45.2, 44.8, 34.4, 30.2, 21.9.

MS (EIMS): $m / z(\%)=321[M-B r]^{+}$.
HRMS (EI): m/z [M-Br] ${ }^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}: 321.40719$; found: 321.40740 .

## 4-Bromo-2,6-bis(2,4-dichlorophenyl)tetrahydro-2H-pyran (3f)

Yield: 378 mg (84\%); colourless solid; mp 125-126 ${ }^{\circ} \mathrm{C}$.
IR (neat): 3092, 2970, 2864, 1897, 1587, 1560, 1469, 1375, 1293, $1203,1170,1108,1083,1045,1004,864,818,784 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, \mathrm{~J}=2.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.91(\mathrm{dd}, J=11.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.48-$ 4.40 ( m, 1 H ), 2.72-2.65 (m, 2 H ), 1.94-1.84 (m, 2 H ).
${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=137.1,134.0,131.8,129.1,128.0$, 127.6, 76.2, 44.4, 43.1.

MS (EIMS): $m / z(\%)=373[\mathrm{M}-\mathrm{Br}]^{+}$.
HRMS (EI): $m / z[M-B r]^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{Cl}_{4} \mathrm{O}$ : 373.20410; found: 373.20412.

## 4-Bromo-2,6-bis(2,4-difluorophenyl)tetrahydro-2H-pyran (3g)

Yield: 310 mg (80\%); colourless solid; mp 104-105 ${ }^{\circ} \mathrm{C}$.
IR (neat): 3050, 2920, 2853, 1610, 1520, 1456, 1410, 1365, 1170, 835, $760 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.54(\mathrm{td}, \mathrm{J}=8.4,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.94-6.88$ (m, 2 H$), 6.84-6.76(\mathrm{~m}, 2 \mathrm{H}), 4.54(\mathrm{dd}, J=11.1,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.42(\mathrm{tt}, J=$ $12.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.57$ (dd, $J=12.7,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.06$ (dd, $J=15.8,11.9$ Hz, 2 H).
${ }^{19} \mathrm{~F}$ NMR (500 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=-110.7780,-110.7930,-115.4618,-$ 115.4768.
${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=\left(\mathrm{d},{ }^{1} J_{\mathrm{CF}}=248.8 \mathrm{~Hz}\right), 159.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}=\right.$ $249.0 \mathrm{~Hz}), 159.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}=249.0 \mathrm{~Hz}\right), 128.2\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=9.1 \mathrm{~Hz}\right), 128.1(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{CF}}=10.0 \mathrm{~Hz}\right), 160.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}=246 \mathrm{~Hz}\right), 136.8\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}}=2.7 \mathrm{~Hz}\right), 124.2(\mathrm{~d}$, $\left.{ }^{4} J_{\mathrm{CF}}=3.6 \mathrm{~Hz}\right), 124.1\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}}=3.6 \mathrm{~Hz}\right), 111.6\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=20.8 \mathrm{~Hz}\right), 111.5(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{CF}}=21.7 \mathrm{~Hz}\right), 103.7\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=25.4 \mathrm{~Hz}\right), 103.7\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=26.3 \mathrm{~Hz}\right), 73.5$, 44.6, 43.7.

MS (EIMS): $m / z(\%)=309[M-B r]^{+}$.
HRMS (EI): $m / z[\mathrm{M}-\mathrm{Br}]^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~F}_{4} \mathrm{O}$ : 309.09025; found: 309.08858.

## 4-Bromo-2,6-bis(4-(trifluoromethyl)phenyl)tetrahydro-2H-pyran (3h)

Yield: 361 mg (80\%); colourless solid; $\mathrm{mp} 113-114{ }^{\circ} \mathrm{C}$.
IR (neat): 3050, 2920, 2853, 1610, 1520, 1456, 1365, 1170, 835, 760 $\mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.22(\mathrm{~d}, \mathrm{~J}=8.0$ $\mathrm{Hz}, 4 \mathrm{H}), 4.61-4.57(\mathrm{~m}, 2 \mathrm{H}), 4.42(\mathrm{tt}, J=12.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.54$ (m, 2 H ), 2.14-2.04 (m, 2 H ).
${ }^{19} \mathrm{~F}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=-57.9030$.
${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=160.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}=246 \mathrm{~Hz}\right), 136.8\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}}=\right.$ $2.7 \mathrm{~Hz}), 127.5\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=2.7 \mathrm{~Hz}\right), 115.3\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=2.7 \mathrm{~Hz}\right), 79.0,45.5,44.9$. MS (EIMS):m/zz (\%) = 373 [M-Br] ${ }^{+}$.
HRMS (EI): m/z [M-Br] calcd. for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~F}_{6} \mathrm{O}$ : 373.76555; found: 373.76540.

## 4-Bromo-2,6-bis(4-fluorophenyl)tetrahydro-2H-pyran (3i)

Yield: 281 mg (84\%); colourless solid; mp 98-99 ${ }^{\circ} \mathrm{C}$.
IR (neat): 3050, 2920, 2853, 1610, 1520, 1456, 1410, 1365, 1170, 835, $760 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.40-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.08-7.01(\mathrm{~m}, 4 \mathrm{H})$, $4.54(\mathrm{dd}, J=11.2,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.41(\mathrm{tt}, J=11.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.49$ (m, 2 H ), 2.12-2.03 (m, 2 H ).
${ }^{19} \mathrm{~F}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=-118.7734,-119.5223$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=160.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}=246 \mathrm{~Hz}\right), 136.8\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}}=\right.$ $2.7 \mathrm{~Hz}), 127.5\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=2.7 \mathrm{~Hz}\right), 115.3\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=2.7 \mathrm{~Hz}\right), 79.0,45.5,44.9$.
MS (EIMS): $m / z(\%)=273[\mathrm{M}-\mathrm{Br}]^{+}$.
HRMS (EI): $m / z[\mathrm{M}-\mathrm{Br}]^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~F}_{2} \mathrm{O}$ : 273.10910; found: 273.10974.

## 4-Bromo-2,6-bis(3-chlorophenyl)tetrahydro-2H-pyran (3j)

Yield: 320 mg (84\%); colourless solid; mp 104-105 ${ }^{\circ} \mathrm{C}$.
IR (neat): 2953, 2948, 2858, 1901, 1686, 1486, 1407, 1368, 1368, 1250, 1122, 1052, $728 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.36$ (s, 2 H ), 7.29-7.22 (m, 6 H ), 4.52 (dd, $J=10.2,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.42-4.28(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{dd}, J=12.6,4.3 \mathrm{~Hz}$, $2 \mathrm{H}), 2.07(\mathrm{q}, \mathrm{J}=11.8 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=142.8,134.4,129.8,128.0,125.9,123.9$, 79.0, 45.0, 44.6.

MS (EIMS): $m / z(\%)=305[\mathrm{M}-\mathrm{Br}]^{+}$.
HRMS (EI): $m / z[M-B r]^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{O}$ : 305.05000; found: 305.04989.

## 4-Bromo-2,6-bis(2-chlorophenyl)tetrahydro-2H-pyran (3k)

Yield: 306 mg ( $85 \%$ ); colourless solid; mp 103-104 ${ }^{\circ} \mathrm{C}$.
IR (neat): 2924, 2866, 1685, 1536, 1448, 1363, 1325, 1274, 1127, 1047, $738 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.70(\mathrm{tt}, J=7.5,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.23$ (m, 2 H$), 7.16(\mathrm{tt}, J=7.4,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.05-7.00(\mathrm{~m}, 2 \mathrm{H}), 4.90(\mathrm{dd}, J=$ $11.1,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.44(\mathrm{tt}, J=12.1,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=12.6,4.0$ $\mathrm{Hz}, 2 \mathrm{H}), 2.07(\mathrm{q}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=158.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}=245.7 \mathrm{~Hz}\right), 128.9\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=\right.$ $8.1 \mathrm{~Hz}), 128.2\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=13.2 \mathrm{~Hz}\right), 127.5\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{CF}}=3.7 \mathrm{~Hz}\right), 124.2\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}}=\right.$ $2.2 \mathrm{~Hz}), 115.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=21.0 \mathrm{~Hz}\right), 73.4,45.1,43.6$.
MS (EIMS): $m / z(\%)=273[M-B r]^{+}$.
HRMS (EI): $m / z[\mathrm{M}-\mathrm{Br}]^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~F}_{2} \mathrm{O}$ : 273.10910; found: 273.10974.

## 4-Bromo-2,6-bis(2-fluorophenyl)tetrahydro-2H-pyran (31)

Yield: 298 mg (80\%); colourless solid; mp 93-94 ${ }^{\circ} \mathrm{C}$.
IR (neat): 2922, 2855, 1684, 1534, 1445, 1366, 1322, 1284, 1122, $1044,733 \mathrm{~cm}^{-1}$.

| SynOpen | D. O. Biradar et al. | OPEN |
| :--- | :--- | :--- |
| ACCESS |  |  |

## Paper

${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.70$ (dd, $J=7.6,1.4 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.35-7.31 (m, 4 H$), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 4.99(\mathrm{dd}, J=11.2,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.49(\mathrm{tt}, J=$ $12.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}, 2.72(\mathrm{dd}, J=12.8,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.95(\mathrm{q}, J=11.8 \mathrm{~Hz}, 2$ H).
${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=138.7,131.1,129.3,128.7,127.2,127.1$, 76.6, 45.2, 43.3.

MS (EIMS): $m / z(\%)=305[\mathrm{M}-\mathrm{Br}]^{+}$.
HRMS (EI): $m / z[M-B r]^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{O}: 305.05000$; found: 305.04989.

## 4-Bromo-2,6-bis(2-bromophenyl)tetrahydro-2H-pyran (3m)

Yield: 395 mg ( $80 \%$ ); colourless solid; mp 123-124 ${ }^{\circ} \mathrm{C}$.
IR (neat): 2954, 2920, 2856, 1686, 1590, 1486, 1407, 1377, 1343, 1280, 1115, 1080, $724 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.69(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, \mathrm{~J}=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.95(\mathrm{dd}, J=$ $11.2,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.50(\mathrm{tt}, J=12.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=12.7,3.2$ $\mathrm{Hz}, 2 \mathrm{H}), 1.92(\mathrm{q}, \mathrm{J}=12.1 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=140.2,132.6,129.1,127.8,127.4,78.8$, 45.1, 43.3.

MS (EIMS): $m / z(\%)=392[M-B r]^{+}$.
HRMS (EI): m/z [M-Br] ${ }^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{Br}_{2} \mathrm{O}$ : 392.94897; found: 392.94767.

## 4-Bromo-2-heptyl-6-phenyltetrahydro-2H-pyran (3n)

Yield: 182 mg (70\%); colourless solid; $\mathrm{mp} 86-87^{\circ} \mathrm{C}$.
IR (neat): 3028, 2924, 2852, 1648, 1451, 1364, 1140, 1081, 1053, 1010, $752 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.32-7.18(\mathrm{~m}, 5 \mathrm{H}), 4.32(\mathrm{dd}, J=11.3$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{tt}, J=11.8 ., 4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.40(\mathrm{~m}, 1 \mathrm{H}), 2.45$ (dd, $J=12.8,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{dd}, J=12.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{q}, J=$ $11.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{q}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.40$ (m, 2 H$), 1.38-1.20(\mathrm{~m}, 9 \mathrm{H}), 0.87(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=141.5,128.4,127.6,125.7,77.9,47.0$, 45.2, 43.2, 35.8, 29.5, 29.2, 25.3, 22.6, 14.2.

MS (EIMS): $m / z(\%)=259[M-B r]^{+}$.
HRMS (EI): m/z [M-Br] ${ }^{+}$calcd. for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{O}$ : 259.20619; found: 259.20580.

## 4-Bromo-2-(4-chlorophenyl)-6-pentyltetrahydro-2H-pyran (3o)

Yield: 247 mg (72\%); colourless solid; mp 89-90 ${ }^{\circ}$.
IR (neat): 2920, 2820, 1642, 1448, 1362, 1260, 1140, 1082, 1050, 974, 832, 752, $698 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.44(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 4.34(\mathrm{dd}, J=11.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{tt}, J=11.8,4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.48-3.42(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{dd}, J=12.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{dd}, J=12.2$, $3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.82(\mathrm{q}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.68(\mathrm{q}, J=11.8 \mathrm{~Hz}, 1$ H), 1.68-1.22 (m, 8 H$), 0.86(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=142.2,128.6,128.2,127.8,126.5,79.4$, 78.2, 46.8, 45.2, 43.2, 35.1, 31.8, 30.9, 25.3, 22.6, 14.1.

MS (EIMS): $m / z(\%)=266[M-B r]^{+}$.
HRMS (EI): $m / z[M-B r]^{+}$calcd. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{ClO}: 266.21419$; found: 266.21580.

## (2R,2'R)-2,2'-[(2R,4S,6S)-4-Bromotetrahydro-2H-pyran-2,6-di-yl]bis(1,4-dioxaspiro[4.5]decane) (3p)

Yield: 288 mg (65\%); colourless solid; mp 113-114 ${ }^{\circ} \mathrm{C}$.
IR (neat): $2845,1260,1150,1070,945,888,750 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=4.37-4.25(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{tt}, J=10.8,2.2$
$\mathrm{Hz}, 2 \mathrm{H}), 3.92-3.82(\mathrm{~m}, 4 \mathrm{H}), 3.41-3.32(\mathrm{~m}, 2 \mathrm{H}), 2.52(\mathrm{dd}, J=12.4,3.8$ $\mathrm{Hz}, 2 \mathrm{H}), 2.21-1.88(\mathrm{~m}, 4 \mathrm{H}), 1.78-1.14(\mathrm{~m}, 18 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=121.6,83.4,79.2,68.9,41.4,34.9,33.1$, 27.2, 24.6.

MS (EIMS): $m / z(\%)=365[\mathrm{M}-\mathrm{Br}]^{+}$.
HRMS (EI): m/z [M-Br] ${ }^{+}$calcd. for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{O}_{5}: 365.24064$; found: 365.24127.

## 4-Bromo-2,6-dihepyltetrahydro-2H-pyran (3q)

Yield: 282 mg (82\%); colourless solid; mp 97-98 ${ }^{\circ} \mathrm{C}$.
IR (neat): 2925, 2852, 1465, 1325, 1370, 1325, 1258, 1151, 1083, 1024, 961, 781, 566, 1269, 1183, 1014, $718 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=4.07(\mathrm{tt}, J=11.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.22-3.16$ ( $\mathrm{m}, 2 \mathrm{H}$ ), $2.17(\mathrm{dd}, J=11.9,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.64(\mathrm{q}, J=11.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.56-$ $1.16(\mathrm{~m}, 24 \mathrm{H}), 0.90(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=77.4,47.4,43.6,35.6,31.7,30.0,29.9$, 29.6, 21.9, 14.1.

MS (EIMS): $m / z(\%)=281[M-B r]^{+}$.
HRMS (EI): m/z [M-Br] ${ }^{+}$calcd. for $\mathrm{C}_{19} \mathrm{H}_{37} \mathrm{O}$ : 281.28444; found: 281.28534.

## 4-Bromo-2,6-dinonyltetrahydro-2H-pyran (3r)

Yield: 353 mg (83\%); colourless solid; mp 104-105 ${ }^{\circ} \mathrm{C}$.
IR (neat): 2923, 2851, 1467, 1328, 1330, 1297, 1242, 1151, 1151, 1087, 1034, 991, $718 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=4.08(\mathrm{tt}, \mathrm{J}=11.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.26-3.12$ (m, 2 H ), 2.18 (dd, $J=12.0,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.65(\mathrm{q}, J=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.56-$ $1.16(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.22(\mathrm{~m}, 30 \mathrm{H}), 0.92-0.86(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=77.6,47.5,43.5,35.9,31.8,29.5,29.2$, 25.5, 22.6, 14.1.

MS (EIMS): $m / z(\%)=337[M-B r]^{+}$.
HRMS (EI): m/z [M-Br] ${ }^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{45} \mathrm{O}: 337.34704$; found: 337.34677.

## 4-Bromo-2,6-dihexyltetrahydro-2H-pyran (3s)

Yield: 282 mg (82\%); colourless solid; mp 91-92 ${ }^{\circ} \mathrm{C}$.
IR (neat): 2925, 2854, 1466, 1365, 1370, 1269, 1225, 1152, 1183, 1014, $718 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=4.07(\mathrm{tt}, J=11.8,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.30-3.15$ (m, 2 H ), 2.18 (dd, $J=12.4,4.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.65(\mathrm{q}, J=12.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.54-$ $1.22(\mathrm{~m}, 20 \mathrm{H}), 0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=77.6,47.4,43.6,35.9,31.8,29.2,25.5$, 22.6, 14.08.

MS (EIMS): $m / z(\%)=253[\mathrm{M}-\mathrm{Br}]^{+}$.
HRMS (EI): m/z [M-Br] ${ }^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{O}$ : 253.25314; found: 253.25214.

## 4-Bromo-2,6-diethyltetrahydro-2H-pyran (3t)

Yield: 183 mg (78\%); colourless solid; mp 61-62 ${ }^{\circ} \mathrm{C}$.

IR (neat): 2952, 2854, 1440, 1330, 1242, 1150, 1082, 1020, 718, 562 $\mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.10(\mathrm{tt}, \mathrm{J}=11.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.18-3.10$
$(\mathrm{m}, 1 \mathrm{H}), 1.24-1.16(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.40(\mathrm{~m}, 6 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 6$ H).
${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=78.1,45.2,43.8,29.9,26.6,9.4$.
MS (EIMS): $m / z(\%)=141[M-B r]^{+}$.
HRMS (EI): $m / z[M-B r]^{+}$calcd. for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{O}$ : 141.13584; found: 141.13687.

## 4-Bromo-2,6-dipropyltetrahydro-2H-pyran (3u)

Yield: 210 mg (79\%); colourless solid; mp 68-69 ${ }^{\circ} \mathrm{C}$.
IR (neat): 2950, 2840, 1365, 1278, 1180, 1070, 1025, $760 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.08(\mathrm{tt}, J=12.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.26-3.18$ (m, 2 H ), 2.16 (dd, $J=12.0,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.64(\mathrm{q}, J=12.0,3.8 \mathrm{~Hz}, 2 \mathrm{H})$, $1.56-1.24(\mathrm{~m}, 8 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=76.8,45.3,44.2,36.2,29.8,29.2,21.8$, 14.0.

MS (EIMS): $m / z(\%)=169[M-B r]^{+}$.
HRMS (EI): m/z [M-Br] ${ }^{+}$calcd. for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{O}$ : 169.65464; found: 169.65460.

## 4-Bromo-2,6-diisopropyltetrahydro-2H-pyran (3v)

Yield: 202 mg ( $80 \%$ ); colourless solid; $\mathrm{mp} 66-67{ }^{\circ} \mathrm{C}$.
IR (neat): 2945, 2853, 2460, 1325, 1242, 1151, 1080, 1025, 716, 562 $\mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.08(\mathrm{tt}, J=11.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-2.90$ (m, 2 H$), 2.19$ (dd, $J=12.2,4.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.72-1.58(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{~d}, \mathrm{~J}=$ $6.4 \mathrm{~Hz}, 6 \mathrm{H}), 0.88(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=79.8,45.4,44.2,30.8,30.1,19.2$.
MS (EIMS): $m / z(\%)=169[M-B r]^{+}$.
HRMS (EI): m/z [M-Br] ${ }^{+}$calcd. for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{O}$ : 169.64340; found: 169.64321.

## 4-Bromo-2,6-dipentyltetrahydro-2H-pyran (3w)

Yield: 258 mg (81\%); colourless solid; mp 82-83 ${ }^{\circ} \mathrm{C}$.
IR (neat): 2932, 2855, 1465, 1365, 1378, 1280, 1230, 1180, 1160, 1080, 1015, $730 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.08(\mathrm{tt}, J=12.40,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.26-$ 3.17 (m, 2 H ), 2.20 (dd, $J=12.4,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.65(\mathrm{q}, J=12.4, \mathrm{~Hz}, 2 \mathrm{H})$, $1.57-1.23(\mathrm{~m}, 16 \mathrm{H}), 0.88(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=77.6,47.5,43.5,35.8,30.8,29.2,25.5$, 22.4, 14.07.

MS (EIMS): $m / z(\%)=225[\mathrm{M}-\mathrm{Br}]^{+}$.
HRMS (EI): m/z [M-Br] ${ }^{+}$calcd. for $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{O}$ : 225.64632; found: 225.64644.

## Conflict of Interest

The authors declare no conflict of interest.

## Acknowledgment

The authors are grateful to the Directors of the Indian Institute of Chemical Technology, Hyderabad, the BSS Arts, Science \& Commerce College, Makni, Latur and the Dayanand Science College, Latur for support.

## Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0042-1751374.

## References

(1) (a) Martín, T.; Padrón, J. I.; Martín, V. S. Synlett 2014, 25, 12. (b) Nicolaou, K. C.; Sorenson, E. J. Classics in Total Synthesis. VCH Weinheim; 1969. (c) Reddy, U. C.; Raju, B. R.; Kumar, E. K. P.; Saikia, A. K. J. Org. Chem. 2008, 73, 1628. (d) Yoshimitsu, T.; Makino, T.; Nagaoka, H. J. Org. Chem. 2004, 69, 1993. (e) Lee, J.; Oh, H. S.; Kang, H. Y. Tetrahedron Lett. 2015, 56, 1099. (f) Norcross, R. D.; Paterson, I. Chem. Rev. 1995, 95, 2041. (g) Tian, X.; Jaber, J. J.; Rychnovsky, S. D. J. Org. Chem. 2006, 71, 3176. (h) Yang, X. F.; Wang, M.; Zhang, Y.; Li, C. J. Synlett 2005, 1912.
(2) (a) Su, B. N.; Takaishi, Y.; Kusumi, T.; Morinols, A. L. Tetrahedron 1999, 55, 14571. (b) Yamauchi, S.; Kawahara, S.; Wukirsari, T.; Nishiwaki, H.; Nishi, K.; Sugahara, T.; Akiyama, K.; Kishida, T. Bioorg. Med. Chem. Lett. 2013, 23, 4923. (c) Akiyama, K.; Yamauchi, S.; Maruyama, M.; Sugahara, T.; Kishida, T.; Koba, Y. Biosci., Biotechnol., Biochem. 2009, 73, 129. (d) Masuda, K.; Nishiwaki, H.; Akiyama, K.; Yamauchi, S.; Maruyama, M.; Sugahara, T.; Kishida, T. Biosci., Biotechnol., Biochem. 2010, 74, 2071.
(3) (a) Ghosh, A. K.; Anderson, D. D. Future Med. Chem. 2011, 3, 1181. (b) Capim, S. L.; Gonçalves, G. M.; dos Santos, G. C. M.; Marinho, B. G.; Vasconcellos, M. L. A. A. Bioorg. Med. Chem. 2013, 21, 6003. (c) Capim, S. L.; Carneiro, P. H. P.; Castro, P. C.; Barros, M. R. M.; Marinho, B. G.; Vasconcellos, M. L. A. A. Eur. J. Med. Chem. 2012, 58, 1. (d) Kharkar, P. S.; Reith, M. E. A.; Dutta, A. K. J. Comput.-Aided Mol. Des. 2008, 22, 1.
(4) (a) Surivet, J. P.; Zumbrunn, C.; Rueedi, G.; Bur, D.; Bruyère, T.; Locher, H.; Ritz, D.; Seiler, P.; Kohl, C.; Ertel, E. A.; Hess, P.; Gauvin, J. C.; Mirre, A.; Kaegi, V.; dos Santos, M.; Kraemer, S.; Gaertner, M.; Delers, J.; Enderlin, P. M.; Weiss, M.; Sube, R.; Hadana, H.; Keck, W.; Hubschwerlen, C. J. Med. Chem. 2015, 58, 927. (b) Surivet, J. P.; Zumbrunn, C.; Bruyère, T.; Bur, D.; Kohl, C.; Locher, H. H.; Seiler, P.; Ertel, E. A.; Hess, P.; Enderlin, P. M.; Enderlin, P. S.; Gauvin, J. C.; Mirre, A.; Hubschwerlen, C.; Ritz, D.; Rueedi, G. J. Med. Chem. 2017, 60, 3776.
(5) (a) León, L. G.; Miranda, P. O.; Martín, V. S.; Padrón, J. I.; Padrón, J. M. Bioorg. Med. Chem. Lett. 2007, 17, 2681. (b) Carrillo, R.; León, L. G.; Martín, T.; Martín, V. S.; Padrón, J. M. Bioorg. Med. Chem. Lett. 2007, 17, 780. (c) Miranda, P. O.; León, L. G.; Martín, V. S.; Padrón, J. I.; Padrón, J. M. Bioorg. Med. Chem. Lett. 2006, 16, 3135.
(6) (a) Muzart, J. J. Mol. Catal. A: Chem. 2010, 319, 1. (b) Smith, A. B. III.; Fox, R. J.; Razler, T. Acc. Chem. Res. 2008, 41, 675. (c) Larrosa, I.; Romea, P.; Urpí, F. Tetrahedron 2008, 64, 2683. (d) Boivin, T. L. B. Tetrahedron 1987, 43, 3309. (e) Nasir, N. M.; Ermanis, K.; Clarke, P. A. Org. Biomol. Chem. 2014, 12, 3323. (f) Clarke, P. A.; Santos, S. Eur. J. Org. Chem. 2006, 2045.

(7) McDonald, B. R.; Scheidt, K. A. Acc. Chem. Res. 2015, 48, 1172.
(8) (a) Yamazaki, S.; Fujinami, K.; Maitoko, Y.; Ueda, K.; Kakiuchi, K. J. Org. Chem. 2013, 78, 8405. (b) Yadav, V. K.; Verma, A. K.; Kumar, P.; Hulika, V. Chem. Commun. 2014, 50, 15457. (c) Budakoti, A.; Mondal, P. K.; Verma, P.; Khamrai, J. Beilstein J. Org. Chem. 2021, 17, 932. (d) Padmaja, P.; Reddy, P. N.; Reddy, B. V. S. Org. Biomol. Chem. 2020, 18, 7514. (e) Reddy, B. V. S.; Nair, P. N.; Antony, A.; Srivastava, N. Eur. J. Org. Chem. 2017, 5484.
(9) (a) Wang, D.; Zhao, X.; Liu, L.; Chen, Y. J. Tetrahedron 2006, 62, 7113. (b) Poliane, K. B.; JoãoMarcos, G.; deFerreira, O.; Fabio, P. L.; Silva, M. L. A.; Vasconcellos, A.; Juliana, A. V. Molecules 2019, 24, 2084. (c) Wen, M.; Tang, L.; Chang, W.; Li, J. Sci. China, Ser. B: Chem. 2005, 48, 38.
(10) (a) Konakanchi, R.; Kankala, S.; Kotha, L. R. Synth. Commun. 2018, 48, 1777. (b) Wu, X. F. Chem. Asian J. 2012, 7, 2502. (c) Wu, X. F.; Neumann, H. Adv. Synth. Catal. 2012, 354, 3141. (d) Enthaler, S. ACS Catal. 2013, 3, 150. (e) Zhu, A.; Li, L.; Wang, J.; Zhuo, K. Green Chem. 2011, 13, 1244. (f) Cheung, C. W.; Zhurkin, F. E.; Hu, X. J. Am. Chem. Soc. 2015, 137, 4932. (g) Barzanò, G.; Cheseaux, A.; Hu, X. Org. Lett. 2019, 21, 490.
(11) Miranda, L. S. M.; Vasconcellos, M. L. A. A. Synthesis 2004, 1767.

