Synthesis 2023; 55(04): 565-579
DOI: 10.1055/s-0042-1751379
short review

The Synthetic Approaches to 1,2-Chlorohydrins

Gerhard Hilt


Abstract

This short review highlights the hitherto realised synthetic approaches towards organic 1,2-chlorohydrins by functionalisation of alkenes (i.e., 1,2-chlorohydroxylation), which is the most prominent access route to this class of compounds. Also, some other synthetic approaches involving the reduction of α-chloroketones, the epoxide opening ring by chloride anions and the utilisation of Grignard reagents for the synthesis of these compounds and chlorination of allylic alcohols are highlighted. Finally, enzymatic reactions for the formation of chlorohydrins are briefly summarised followed by a short view on natural products containing this moiety.

1 Introduction

2 Applications for the Synthesis of 1,2-Chlorohydrins

2.1 Chlorohydroxylation of Alkenes

2.2 Reduction of Chloroketones

2.3 Metalorganic Reagents

2.4 Epoxide Ring Opening

2.5 Chlorination of Allylic Alcohols

2.6 Biochemical Methods

2.7 Selected Applications in Natural Product Total Synthesis

3 Conclusion



Publication History

Received: 25 July 2022

Accepted: 21 September 2022

Article published online:
01 December 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 For a more comprehensive review on the functionalization of alkenes, see: Göttlich R. Science of Synthesis, Vol. 35. Wirth T. Thieme; Stuttgart: 2007: 189-250
  • 2 Sulistyowaty MI, Uyen NH, Suganuma K, Chitama B.-YA, Yahata K, Kaneko O, Sugimoto S, Yamano Y, Kawakami S, Otsuka H, Matsunami K. Molecules 2021; 26: 1756
    • 3a Yoshimitsu T, Fukumoto N, Nakatani R, Kojima N, Tanaka T. J. Org. Chem. 2010; 75: 5425
    • 3b Ciminiello P, Fattorusso E, Forino M, Di Rosa M, Ianaro A, Poletti R. J. Org. Chem. 2001; 66: 578
  • 4 For the revised structure of the chlorosulfolipid mytilipin B (3), see: Sondermann P, Carreira EM. J. Am. Chem. Soc. 2019; 141: 10510
  • 5 Ho T.-L. Synth. Commun. 1979; 9: 37
  • 6 Dulcere J.-P, Rodriguez J. Tetrahedron Lett. 1982; 23: 1887
  • 7 Lai J.-Y, Wang F.-S, Guo G.-Z, Dai L.-X. J. Org. Chem. 1993; 58: 6944
  • 8 Wickens ZK, Skakuj K, Morandi B, Grubbs RH. J. Am. Chem. Soc. 2014; 136: 890
  • 9 Sawyer DT, Hage JP, Sobkowiak A. J. Am. Chem. Soc. 1995; 117: 106
  • 10 Sakurada I, Yamasaki S, Göttlich R, Iida T, Kanai M, Shibasaki M. J. Am. Chem. Soc. 2000; 122: 1245
    • 11a Wengert M, Sanseverino AM, de Mattos MC. S. J. Braz. Chem. Soc. 2002; 13: 700
    • 11b Mendonça GF, Sanseverino AM, de Mattos MC. S. Synthesis 2003; 45
  • 12 de Souza SP. L, da Silva JF, de Mattos MC. S. J. Braz. Chem. Soc. 2003; 14: 832
  • 13 Dewkar GK, Narina SV, Sudalai A. Org. Lett. 2003; 5: 4501
  • 14 Bentley PA, Mei Y, Du J. Tetrahedron Lett. 2008; 49: 1425
  • 15 Zhang J, Wang J, Qiu Z, Wang Y. Tetrahedron 2011; 67: 6859
  • 16 Swamy P, Kumar MA, Reddy MM, Naresh M, Srujana K, Narender N. RSC Adv. 2014; 4: 26288
  • 17 Egami H, Yoneda T, Uku M, Ide T, Kawato Y, Hamashima Y. J. Org. Chem. 2016; 81: 4020
  • 18 Jia Y, Chen L, Zhang H, Zheng Y, Jiang Z.-X, Yang Z. Org. Biomol. Chem. 2018; 16: 7203
  • 19 Liang D, Li X, Lan Q, Huang W, Yuan L, Ma Y. Tetrahedron Lett. 2016; 57: 2207
  • 20 Symeonidis TS, Athanasoulis A, Ishii R, Uozumi Y, Yamada YM. A, Lykakis IN. ChemPhotoChem 2017; 1: 479
    • 21a El-Qisairi A, Qaseer HA, Henry PM. J. Organomet. Chem. 2002; 656: 168
    • 21b El-Qisairi A, Henry PM. J. Organomet. Chem. 2000; 603: 50
    • 21c El-Qisairi A, Hamed O, Henry PM. J. Org. Chem. 1998; 63: 2790
    • 21d Hamed O, Henry PM. Organometallics 1998; 17: 5184
  • 22 Denmark SE, Carson N. Org. Lett. 2015; 17: 5728
  • 23 Zeng Y.-F, Liu X.-G, Tan D.-H, Fan W.-X, Li Y.-N, Guo Y, Wang H. Chem. Commun. 2020; 56: 4332
  • 24 Li W, Zhou P, Li G, Lin L, Feng X. Adv. Synth. Catal. 2020; 362: 1982
  • 25 Shibata I, Suzuki T, Baba A, Matsuda H. J. Chem. Soc., Chem. Commun. 1988; 882
  • 26 Sendelbach S, Schwetzler-Raschke R, Radl A, Kaiser R, Henle GH, Korfant H, Reiner S, Föhlisch B. J. Org. Chem. 1999; 64: 3398
  • 27 Touge T, Nara H, Kida M, Matsumura K, Kayaki Y. Org. Lett. 2021; 23: 3070
  • 28 Tarhouni R, Kirschleger B, Rambaud M, Villieras J. Tetrahedron Lett. 1984; 25: 835
  • 29 Einhorn C, Allavena C, Luche J.-L. J. Chem. Soc., Chem. Commun. 1988; 333
  • 30 Degennaro L, Fanelli F, Giovine A, Luisi R. Adv. Synth. Catal. 2015; 357: 21
  • 31 Nishimura RH. V, Murie VE, Soldi RA, Clososki GC. Synthesis 2015; 47: 1455
  • 32 Monticelli S, Rui M, Castoldi L, Missere G, Pace V. Monatsh. Chem. 2018; 149: 1285
  • 33 Yan H, Ananthan B, Chang SH. Eur. J. Org. Chem. 2019; 778
  • 34 Jayaraman S, Hu S, Oehlschlager AC. Tetrahedron Lett. 1995; 36: 4765
  • 35 Hu S, Jayaraman S, Oehlschlager AC. J. Org. Chem. 1996; 61: 7513
  • 36 Hu S, Jayaraman S, Oehlschlager AC. J. Org. Chem. 1999; 63: 8843
  • 37 Hu S, Jayaraman S, Oehlschlager AC. J. Org. Chem. 1999; 64: 2524
  • 38 Nikpour F, Mozafari R, Mogaddam BM. J. Chin. Chem. Soc. 2009; 56: 404
  • 39 Kotsuki H, Shimanouchi T, Ohshima R, Fujiwara S. Tetrahedron 1998; 54: 2709
  • 40 Xu L.-W, Li L, Xia C.-G, Zhao P.-Q. Tetrahedron Lett. 2004; 45: 2435
    • 41a Brunel JM, Legrand O, Reymond S, Buono G. Angew. Chem. Int. Ed. 2000; 39: 2554
    • 41b Reymond S, Brunel JM, Buono G. Tetrahedron: Asymmetry 2000; 11: 4441
    • 42a Malkov AV, Gordon MR, Stončius S, Hussain J, Kočovský P. Org. Lett. 2009; 11: 5390
    • 42b Neniškis A, Stončius S. Eur. J. Org. Chem. 2015; 6359
  • 43 Nicolaou KC, Simmons NL, Ying Y, Heretsch PM, Chen JS. J. Am. Chem. Soc. 2011; 133: 8134
  • 44 Schlama T, Gabriel K, Gouverneur V, Mioskowski C. Angew. Chem., Int. Ed. Engl. 1997; 36: 2342
  • 45 Kamada Y, Kitamura Y, Tanaka T, Yoshimitsu T. Org. Biomol. Chem. 2013; 11: 1598
  • 46 Markó IE, Richardson PR, Bailey M, Maguire AR, Coughlan N. Tetrahedron Lett. 1997; 38: 2339
  • 47 Ren J, Tong R. Org. Biomol. Chem. 2013; 11: 4312
  • 48 Shibuya GM, Kanady JS, Vanderwal CD. J. Am. Chem. Soc. 2008; 130: 12514
  • 49 For an excellent review on the halogenation reaction in natural product synthesis, see: Chung W.-j, Vanderwal CD. Angew. Chem. Int. Ed. 2016; 55: 4396
  • 50 Crumbie RL, Ridley DD, Simpson GW. J. Chem. Soc., Chem. Commun. 1977; 315
  • 51 Sadozai SK, Merckx EM, Van de Wal AJ, Lemière GL, Esmans EL, Lepoivre JA, Alderweireldt FC. Bull. Soc. Chim. Belg. 1982; 91: 163
  • 52 Grunwald J, Wirz B, Scollar MP, Klibanov AM. J. Am. Chem. Soc. 1986; 108: 6732
  • 53 Kolodiazhna OO, Kolodiazhna AO, Kolodiazhnyi OI. Tetrahedron: Asymmetry 2013; 24: 37
  • 54 Roiban G.-D, Agudo R, Reetz MT. Angew. Chem. Int. Ed. 2014; 53: 8659
  • 55 Dong JJ, Fernández-Fueyo E, Li J, Guo Z, Renirie R, Wever R, Hollmann F. Chem. Commun. 2017; 53: 6207
  • 56 Lopez S, Rondot L, Leprêtre C, Marchi-Delapierre C, Ménage S, Cavazza C. J. Am. Chem. Soc. 2017; 139: 17994
  • 57 Lopez S, Rondot L, Cavazza C, Iannello M, Boeri-Erba E, Burzlaff N, Strinitz F, Jorge-Robin A, Marchi-Delapierre C, Ménage S. Chem. Commun. 2017; 53: 3579
    • 58a Shibuya GM, Kanady JS, Vanderwal CD. J. Am. Chem. Soc. 2008; 130: 12514
    • 58b Umezawa T, Shibata M, Kaneko K, Okino T, Matsuda F. Org. Lett. 2011; 13: 904
    • 58c Chung W.-j, Carlson JS, Bedke DK, Vanderwal CD. Angew. Chem. Int. Ed. 2013; 52: 10052
    • 58d Chung W.-j, Vanderwal CD. Acc. Chem. Res. 2014; 47: 718
    • 58e Chung W.-j, Carlson JS, Vanderwal CD. J. Org. Chem. 2014; 79: 2226
    • 58f Umezawa T, Matsuda F. Tetrahedron Lett. 2014; 55: 3003
    • 58g Bailey AM, Wolfrum S, Carreira EM. Angew. Chem. Int. Ed. 2016; 55: 639
    • 58h Landry ML, Hu DX, McKenna GM, Burns NZ. J. Am. Chem. Soc. 2016; 138: 5150
    • 58i Boshkow J, Fischer S, Bailey AM, Wolfrum S, Carreira EM. Chem. Sci. 2017; 8: 6904
  • 59 Umezawa T, Shibata M, Tamagawa R, Matsuda F. Org. Lett. 2019; 21: 7731