Direct Methenylation of 4-Alkylpyridines Using Eschenmoser’s Salt

G. N. Shivers, S. L. Tun, S. L. McLean, F. C. Pigge
Catalytic Asymmetric [3+3] Cycloaddition of Activated Isocyanides with Azomethine Imines

- High yields
- Good to excellent stereoselectivities
- Wide substrate scope
- Simple procedure
- Late-stage functionalization of complex bioactive molecules

5 mol% Ag₂CO₃
10 mol% L*
THF, 25 °C, 48 h

[3+3] cycloaddition up to >20:1 dr
99% yield, 99% ee

R₁ = aryl, heteroaryl, alkyl
R₂ = H, aryl, heteroaryl, alkyl
R³ = H, Me
EWG = phosphine oxide, phosphonate, ester, amide

Translation of a Phosphine- and Azide-Based Reaction to Chemical Modification of Biomolecules in Ionic Liquid

C. P. Uzoewulu
J. Ohata *
North Carolina State University, USA

R = biomolecule
peptide/protein DNA saccharide

ionic liquid
Synthetic Tools that Enable Synthesis and Understanding of Bioactive Macrocycles

A. K. Yudin*
The University of Toronto, Canada

Unlocking Electrophilic N-Aryl Intermediates from Aryl Azides, Nitroarenes, and Aryl Amines in Cyclization–Migration Reactions

T. G. Driver*
University of Illinois at Chicago, USA

Direct Methenylation of 4-Alkylpyridines Using Eschenmoser’s Salt

G. N. Shivers
S. L. Tun
S. L. McLean
F. C. Pigge*
University of Iowa, USA
Synlett 2022, 33, 1907–1912
DOI: 10.1055/a-1893-7550

G. S. Mathenjwa
M. P. Akerman
M. L. Bode
C. G. Veale*
University of Cape Town, South Africa

Synthetic and Mechanistic Investigation of an Unexpected Intramolecular 1-5 Nitrogen to Carbon Tosyl Migration

Migrating Group
NaOH, THF
r.t., 16 h

1,5-Nitrogen to Carbon Tosyl Migration

Synlett 2022, 33, 1913–1916
DOI: 10.1055/a-1921-0928

M. Fragkiadakis
C. G. Neochoritis*
University of Crete, Greece

α-Metalated Isocyanides Toward a Tangible Reagent Space

One-pot > tangible > bifunctionality

Synlett 2022, 33, 1917–1924
DOI: 10.1055/a-1930-7294

Y.-T. Guan
J.-Z. Li
X.-E. Cai
S.-J. Hu
J.-H. Zhang
K.-W. Lei*
H. Liu*
W.-T. Wei*
Ningbo University, P. R. of China
Wenzhou University, P. R. of China

Oxone-Promoted Cyclization/Hydrolysis of 1,5-Enenitriles Initiated via Direct C(sp³)–H Oxidative Functionalization: Access to Pyrrolidine-2,4-diones

© 2022. Thieme. All rights reserved.
Stereoselective Synthesis of (Z)-1,2-Bis(arylsulfanyl)ethenes with Calcium Carbide as a Solid Alkyne Source

Q. Wang
Z. Wang
Z. Li*
Northwest Normal University, P. R. of China

Inexpensive and easy-to-handle alkyne source
High stereoselectivity
Wide functional-group tolerance
Eighteen examples
Extension to gram scale

Heterogeneous Photocatalytic Radical Synthesis of Aryl Allyl Sulfones

L. Wang*
L.-f. Zhang
Changzhou Vocational Institute of Engineering, P. R. of China

PANI–g-C3N4–TiO2
visible light, rt
15 examples, 57–81%

Synthesis of Dehydromuscone by an Alkene Metathesis Macrocyclization Reaction at 0.2 M Concentration

F. Garnes-Portolés
J. Sánchez-Quesada
E. Espinós-Ferri
A. Leyva-Pérez*
Universidad Politécnica de Valéncia-Consejo Superior de Investigaciones Científicas, Spain

Dehydromuscone
0.1 mol% catalyst
0.2 M concentration

© 2022. Thieme. All rights reserved.

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.
Free-Radical-Involved Trifluoromethylthiolation Cyclization of Alkenes To Access SCF$_3$-Substituted Indolo[2,1-α]isoquinolines

Y. Li
L. Li*
Q. Yan
X. Li
Z.-Q. Liu*
Z. Li*

Hebei University, P. R. of China
Nanjing University of Chinese Medicine, P. R. of China

Stereoselective Synthesis of Acyclic Skeleton of Boscartin A

D. Saha
M. H. Sahana
G. H. Mandal
R. K. Goswami*

Indian Association for the Cultivation of Science, India

Rhodium(I)-Catalyzed [2+2+1]-Carbonylative Cycloaddition of Diynes with Anthracene α-Diketone as the Source of CO

J. Jia
Y. Yamaguchi
T. Ueda
H. Yamada
K. Kakuchi
T. Morimoto*

Nara Institute of Science and Technology (NAIST), Japan

© 2022. Thieme. All rights reserved.