Technical Details of Redo Aortic Valve Replacement Using St. Jude Medical Mechanical Prosthesis in a Patient with Thrombosed Aortic Mechanical Prosthesis: A Video Presentation

Niwin George1 Lakshmi Kumari Sankhyan2 Shikha Goja1 Sheil Avneesh1 Sumanth Raghuprakash1 Shraddha Gupta1 Niraj Nirmal Pandey1 Ujjwal K. Chowdhury1

1 Cardiothoracic Centre, All India Institute of Medical Sciences, New Delhi, India
2 Department of Cardiothoracic and Vascular Surgery, All India Institute of Medical Sciences, Bilaspur, Himachal Pradesh, India

Address for correspondence Ujjwal Kumar Chowdhury, MCh, Diplomate NB, Department of Cardiothoracic and Vascular Surgery, All India Institute of Medical Sciences, New Delhi, 110029, India (e-mail: ujjwalchow@rediffmail.com; ujjwalchowdhury@gmail.com).

Abstract

Keywords
► redo aortic valve replacement
► St. Jude Medical mechanical prosthesis
► thrombosed aortic mechanical prosthesis

Current consensus guidelines of the American Heart Association and European Society of Cardiology uniformly recommend either type of prosthetic valve for patients aged between 60 and 70 years and mechanical prosthesis for patients aged less than 60 years. These recommendations are based on the results of randomized controlled trials that demonstrated no significant difference in late survival. Two of these trials compared mechanical and bioprosthetic valve models implanted in 1970s and 1980s. The other two trials included patients undergoing aortic valve replacement. Contemporary data are limited to small single-center studies.

Introduction

Current consensus guidelines of the American Heart Association (AHA) and European Society of Cardiology (ESC) uniformly recommend either type of prosthetic valve for patients aged between 60 and 70 years and mechanical prosthesis for patients aged less than 60 years.1–4 These recommendations are based on the results of four randomized controlled trials that demonstrated no significant difference in late survival.2–6 Two of these trials compared mechanical and bioprosthetic valve models implanted in 1970s and 1980s.5–7 The other two trials included patients undergoing aortic valve replacement. Contemporary data are limited to small single-center studies.1,2,8–10

Valve replacement in young adults entails a choice between a mechanical prosthesis with risks of anticoagulation-related bleeding/thrombosis versus bioprosthesis necessitating eventual reoperation.

Despite usage of carbon pyrolite and central flow design of St. Jude Medical mechanical prosthetic valve, thromboembolism and anticoagulant-induced hemorrhage after surgery continue to account for 75% of all valve-related complications.11,12

ISSN 2457-0206.
Surgical Techniques

Following systemic heparinization, elective right femoral arteriovenous cannulation is done using long femoral arterial and venous cannulae (Edwards Lifesciences LLC, One Edwards Way, Irvine, California, United States).

Under cardiopulmonary bypass, secondary median sternotomy is performed with the heart decompressed on bypass. The pericardium overlying the aorta, right ventricular outflow tract, and superior vena cava is dissected.

An 18-Fr sump suction vent is placed over the main pulmonary artery for further decompression of the heart to facilitate dissection. The superior caval vein is being dissected and cannulated directly using an angled metal tipped venous cannula and drained directly into the oxygenator. The intrapericardial inferior caval vein is dissected and looped for later occlusion.

After aortic cross-clamping, an oblique horse-shoe shaped aortotomy was performed in between stay sutures 1.5 cm above the sinus of the right coronary artery stopping approximately 1 cm above the midpoint of the noncoronary sinus. Myocardial protection was achieved by integrated myocardial protection (Pannus formation) and usually do not respond to continued thrombolytic treatment. Explantation of the prosthetic valves during redo surgical procedures presents formidable surgical challenges in many instances.

We present herein a 48-year-old male patient diagnosed to have a chronic thrombosed St. Jude Medical aortic valve prosthesis, with failed thrombolysis, who underwent explantation of the thrombosed aortic prosthesis and re-replacement of the mitral valve using another 21 mm St. Jude Medical mechanical prosthesis. The technical details of explantation and re-replacement procedure without causing injury to the cardiac chambers and great vessels have been discussed in detail. Postoperative recovery was uneventful.

Results

The patient was weaned off cardiopulmonary bypass on dopamine 5µg/kg/min and nitroglycerin 0.5 µg/kg/min. He was extubated after 6 hours. At 12 months follow-up, he is in New York Heart Association functional class I with left ventricular ejection fraction of 0.60, in normal sinus rhythm. Echocardiographically, the mean systolic left ventricle-to-aortic pressure gradient was 8 mm Hg, no aortic regurgitation and there was no paravalvular/cuff leakage.

Conclusions

Echocardiographically, the mean systolic left ventricle-to-aortic pressure gradient was 8 mm Hg, no aortic regurgitation and there was no paravalvular/cuff leakage.

Take-Home Message

- Elective institution of cardiopulmonary bypass using femoral arteriovenous cannulation prior to sternotomy prevents accidental injury to the cardiac chambers and great vessels during sternal entry. Pulmonary artery venting and cannulation of the superior vena cava further facilitate dissection of the cardiac chambers without causing injury. Placement of two stay sutures on the prosthetic annulus and intracapsular dissection greatly facilitates explantation without causing aorto-ventricular discontinuity.
References


