Pituitary Stalk Hemangioblastoma: Complete Resection through Orbitozygomatic Approach with Extradural Anterior Clinoidectomy

Raffaella Messina1, Giovanni Cirrottola1, Leonello Tacconi2, Jacques Guyotat3, Francesco Signorelli1

1 Division of Neurosurgery, Neurosciences and Sense Organs, Department of Basic Medical Sciences, “Aldo Moro” University of Bari Medical School, Bari, Italy
2 Division of Neurosurgery, Azienda Sanitaria Universitaria Integrata di Trieste, University Hospital of Trieste, Trieste, Italy
3 Groupement Hospitalier Est, Hôpital Neurologique et Neurochirurgical “P. Wertheimer”, Service de Neurochirurgie D, Lyon, France

Address for correspondence Raffaella Messina, MD, Division of Neurosurgery, Neurosciences and Sense Organs, Department of Basic Medical Sciences, “Aldo Moro” University of Bari Medical School, Azienda Ospedaliero-Universitaria Policlinico Consorziale, Piazza Giulio Cesare, 11, 70124 Bari, Italy (e-mail: raffamessina@gmail.com; raffaella.messina@uniba.it).

Abstract

Background Pituitary stalk hemangioblastomas (PSHBLs) are rare vascular tumors and their surgical removal is challenging due to the proximity with several fundamental anatomic structures including the pituitary stalk, third ventricle, hypothalamus, and optic pathways. To date, only few descriptions of transcranial and transsphenoidal approaches for PSHBLs have been reported in the literature and none in video, with suboptimal outcomes in terms of pituitary function preservation. Here, we describe the use of orbitozygomatic (OZ) craniotomy with extradural anterior clinoidectomy (EAC) for the removal of a PSHBL with preservation of the pituitary stalk.

Case Description A 60-year-old woman with a sporadic symptomatic HBL of the pituitary stalk, with the typical features of avid contrast enhancement on T1- and flow voids on T2-weighted magnetic resonance imaging (MRI) images, underwent a right OZ craniotomy with EAC. The choice of the approach was guided by the necessity of exposing the floor of the 3rd ventricle and infundibulum, where the origin of the pituitary stalk is better appreciated and preserved, without brain retraction. EAC was deemed important due to the necessity of widening the right carotico-oculomotor and optocarotid triangles and gaining access to the ophthalmic segment of the internal carotid artery, origin of the superior hypophyseal artery, and the tumor supply. The postoperative MRI confirmed gross tumor removal with preservation of the pituitary stalk and no tumor recurrence after 2 years of follow-up.

Conclusion OZ craniotomy coupled with EAC facilitates surgical removal of PSHBLs thus augmenting the chances of pituitary function preservation. The link to the video can be found at https://youtu.be/hH65W937RGY.
Fig. 1 Intraoperative picture, microscopic view through the R orbitozygomatic approach. Aspirator (A) and Rhoton ball-tip probe are into the R opticocarotid triangle. White arrow: pituitary stalk; black arrow: clinoidal segment of R CA; white arrowhead: R optic nerve; black arrowhead: L optic nerve; white asterisk: R PComA; black asterisk: Al segment of R ACA; A: aspirator; R: Rhoton ball-tip probe. White-shaded area: projection of R anterior clinoid. R, right; CA, internal carotid artery; L, left; PComA, posterior communicating artery; ACA, anterior cerebral artery.

Fig. 2 From left to right: Preoperative magnetic resonance imaging (MRI); sagittal (A), coronal (B), and axial (C) T1-weighted (T1W) gadolinium enhanced and coronal T2W (D) showing an avidly enhancing lesion attached to the pituitary stalk and occupying the right basal cisterns with multiple flow voids. “Reprinted from, Clinical Neurology Neurosurgery, Vol.168, Alshafai N, Maduri R, Shail M, Chirchiglia D, Meyronet D, Signorelli F, Surgical approach for suprasellar hemangioblastomas preserving the pituitary stalk: Review of the literature and report of a further case, Pages No. 147–152, Copyright 4314191018836 (2018), with permission from Elsevier.”