Semin Thromb Hemost 2023; 49(03): 305-313
DOI: 10.1055/s-0042-1758791
Review Article

Past, Present, and Future Perspectives of Plasminogen Activator Inhibitor 1 (PAI-1)

1   Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
2   Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
,
1   Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
› Author Affiliations
Funding G.B.M. was supported by Swedish Orphan Biovitrum AB, National Institute for Health Research. N.J.M. and G.B.M. were supported by CVG-1721-20. N.J.M. was supported by NHS Grampian Endowment (COV19-004 and 20/021), Friends of Anchor (RS 2019 003), and British Heart Foundation (PG/15/82/31721; PG/20/17/35050).

Abstract

Plasminogen activator inhibitor 1 (PAI-1), a SERPIN inhibitor, is primarily known for its regulation of fibrinolysis. However, it is now known that this inhibitor functions and contributes to many (patho)physiological processes including inflammation, wound healing, cell adhesion, and tumor progression.

This review discusses the past, present, and future roles of PAI-1, with a particular focus on the discovery of this inhibitor in the 1970s and subsequent characterization in health and disease. Throughout the past few decades diverse functions of this serpin have unraveled and it is now considered an important player in many disease processes. PAI-1 is expressed by numerous cell types, including megakaryocytes and platelets, adipocytes, endothelial cells, hepatocytes, and smooth muscle cells. In the circulation PAI-1 exists in two pools, within plasma itself and in platelet α-granules. Platelet PAI-1 is secreted following activation with retention of the inhibitor on the activated platelet membrane. Furthermore, these anucleate cells contain PAI-1 messenger ribonucleic acid to allow de novo synthesis.

Outside of the traditional role of PAI-1 in fibrinolysis, this serpin has also been identified to play important roles in metabolic syndrome, obesity, diabetes, and most recently, acute respiratory distress syndrome, including coronavirus disease 2019 disease. This review highlights the complexity of PAI-1 and the requirement to ascertain a better understanding on how this complex serpin functions in (patho)physiological processes.

Authors' Contributions

G.B.M. researched, wrote, and edited the manuscript. N.J.M. conceived the idea and wrote/edited the manuscript.




Publication History

Article published online:
15 December 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Fay WP, Parker AC, Condrey LR, Shapiro AD. Human plasminogen activator inhibitor-1 (PAI-1) deficiency: characterization of a large kindred with a null mutation in the PAI-1 gene. Blood 1997; 90 (01) 204-208
  • 2 Hamsten A, Wiman B, de Faire U, Blombäck M. Increased plasma levels of a rapid inhibitor of tissue plasminogen activator in young survivors of myocardial infarction. N Engl J Med 1985; 313 (25) 1557-1563
  • 3 Hamsten A, de Faire U, Walldius G. et al. Plasminogen activator inhibitor in plasma: risk factor for recurrent myocardial infarction. Lancet 1987; 2 (8549): 3-9
  • 4 Nagai N, Suzuki Y, Van Hoef B, Lijnen HR, Collen D. Effects of plasminogen activator inhibitor-1 on ischemic brain injury in permanent and thrombotic middle cerebral artery occlusion models in mice. J Thromb Haemost 2005; 3 (07) 1379-1384
  • 5 Juhan-Vague I, Pyke SD, Alessi MC, Jespersen J, Haverkate F, Thompson SG. Fibrinolytic factors and the risk of myocardial infarction or sudden death in patients with angina pectoris. ECAT Study Group. European Concerted Action on Thrombosis and Disabilities. Circulation 1996; 94 (09) 2057-2063
  • 6 Wiman B. Plasminogen activator inhibitor 1 (PAI-1) in plasma: its role in thrombotic disease. Thromb Haemost 1995; 74 (01) 71-76
  • 7 Alessi MC, Juhan-Vague I. PAI-1 and the metabolic syndrome: links, causes, and consequences. Arterioscler Thromb Vasc Biol 2006; 26 (10) 2200-2207
  • 8 Brakman P, Astrup T. Selective inhibition in human pregnancy blood of urokinase induced fibrinolysis. Scand J Clin Lab Invest 1963; 15: 603-609
  • 9 Hedner U. Inhibitor(s) of plasminogen activation distinct from the other plasma protease inhibitors- a review. 1979: 189
  • 10 Gallimore MJ. Inhibitors of plasminogen activation present in human plasma. 1979: 199
  • 11 Collen D. Identification and some properties of a new fast-reacting plasmin inhibitor in human plasma. Eur J Biochem 1976; 69 (01) 209-216
  • 12 Moroi M, Aoki N. Isolation and characterization of alpha2-plasmin inhibitor from human plasma. A novel proteinase inhibitor which inhibits activator-induced clot lysis. J Biol Chem 1976; 251 (19) 5956-5965
  • 13 Müllertz S, Clemmensen I. The primary inhibitor of plasmin in human plasma. Biochem J 1976; 159 (03) 545-553
  • 14 Kruithof EK, Tran-Thang C, Ransijn A, Bachmann F. Demonstration of a fast-acting inhibitor of plasminogen activators in human plasma. Blood 1984; 64 (04) 907-913
  • 15 Chmielewska J, Rånby M, Wiman B. Evidence for a rapid inhibitor to tissue plasminogen activator in plasma. Thromb Res 1983; 31 (03) 427-436
  • 16 Loskutoff DJ, van Mourik JA, Erickson LA, Lawrence D. Detection of an unusually stable fibrinolytic inhibitor produced by bovine endothelial cells. Proc Natl Acad Sci U S A 1983; 80 (10) 2956-2960
  • 17 Booth NA, Anderson JA, Bennett B. Platelet release protein which inhibits plasminogen activators. J Clin Pathol 1985; 38 (07) 825-830
  • 18 Collen D. Report of the Meeting of the Subcommittee-on-Fibrinolysis, San-Diego, Ca, USA, July 13, 1985. Thromb Haemost 1985; 54 (04) 893-893
  • 19 van Mourik JA, Lawrence DA, Loskutoff DJ. Purification of an inhibitor of plasminogen activator (antiactivator) synthesized by endothelial cells. J Biol Chem 1984; 259 (23) 14914-14921
  • 20 Ginsburg D, Zeheb R, Yang AY. et al. cDNA cloning of human plasminogen activator-inhibitor from endothelial cells. J Clin Invest 1986; 78 (06) 1673-1680
  • 21 Ny T, Sawdey M, Lawrence D, Millan JL, Loskutoff DJ. Cloning and sequence of a cDNA coding for the human beta-migrating endothelial-cell-type plasminogen activator inhibitor. Proc Natl Acad Sci U S A 1986; 83 (18) 6776-6780
  • 22 Binder BR, Christ G, Gruber F. et al. Plasminogen activator inhibitor 1: physiological and pathophysiological roles. News Physiol Sci 2002; 17: 56-61
  • 23 Gong L, Liu M, Zeng T. et al. Crystal structure of the Michaelis complex between tissue-type plasminogen activator and plasminogen activators inhibitor-1. J Biol Chem 2015; 290 (43) 25795-25804
  • 24 Croucher DR, Saunders DN, Lobov S, Ranson M. Revisiting the biological roles of PAI2 (SERPINB2) in cancer. Nat Rev Cancer 2008; 8 (07) 535-545
  • 25 Dupont DM, Madsen JB, Kristensen T. et al. Biochemical properties of plasminogen activator inhibitor-1. Front Biosci 2009; 14 (04) 1337-1361
  • 26 Elliott PR, Lomas DA, Carrell RW, Abrahams JP. Inhibitory conformation of the reactive loop of alpha 1-antitrypsin. Nat Struct Biol 1996; 3 (08) 676-681
  • 27 Wright HT, Scarsdale JN. Structural basis for serpin inhibitor activity. Proteins 1995; 22 (03) 210-225
  • 28 Huntington JA, Read RJ, Carrell RW. Structure of a serpin-protease complex shows inhibition by deformation. Nature 2000; 407 (6806): 923-926
  • 29 Na YR, Im H. The length of the reactive center loop modulates the latency transition of plasminogen activator inhibitor-1. Protein Sci 2005; 14 (01) 55-63
  • 30 Keijer J, Linders M, van Zonneveld AJ, Ehrlich HJ, de Boer JP, Pannekoek H. The interaction of plasminogen activator inhibitor 1 with plasminogen activators (tissue-type and urokinase-type) and fibrin: localization of interaction sites and physiologic relevance. Blood 1991; 78 (02) 401-409
  • 31 Lin Z, Jiang L, Yuan C. et al. Structural basis for recognition of urokinase-type plasminogen activator by plasminogen activator inhibitor-1. J Biol Chem 2011; 286 (09) 7027-7032
  • 32 Al-Hamodi Z, Ismail IS, Saif-Ali R, Ahmed KA, Muniandy S. Association of plasminogen activator inhibitor-1 and tissue plasminogen activator with type 2 diabetes and metabolic syndrome in Malaysian subjects. Cardiovasc Diabetol 2011; 10: 23
  • 33 Horn IR, van den Berg BM, Moestrup SK, Pannekoek H, van Zonneveld AJ. Plasminogen activator inhibitor 1 contains a cryptic high affinity receptor binding site that is exposed upon complex formation with tissue-type plasminogen activator. Thromb Haemost 1998; 80 (05) 822-828
  • 34 Gils A, Declerck PJ. Plasminogen activator inhibitor-1. Curr Med Chem 2004; 11 (17) 2323-2334
  • 35 Hekman CM, Loskutoff DJ. Endothelial cells produce a latent inhibitor of plasminogen activators that can be activated by denaturants. J Biol Chem 1985; 260 (21) 11581-11587
  • 36 Sprengers ED, Kluft C. Plasminogen activator inhibitors. Blood 1987; 69 (02) 381-387
  • 37 Loskutoff DJ, Curriden SA. The fibrinolytic system of the vessel wall and its role in the control of thrombosis. Ann N Y Acad Sci 1990; 598: 238-247
  • 38 Mimuro J, Loskutoff DJ. Binding of type 1 plasminogen activator inhibitor to the extracellular matrix of cultured bovine endothelial cells. J Biol Chem 1989; 264 (09) 5058-5063
  • 39 Seiffert D, Loskutoff DJ. Evidence that type 1 plasminogen activator inhibitor binds to the somatomedin B domain of vitronectin. J Biol Chem 1991; 266 (05) 2824-2830
  • 40 Declerck PJ, De Mol M, Alessi MC. et al. Purification and characterization of a plasminogen activator inhibitor 1 binding protein from human plasma. Identification as a multimeric form of S protein (vitronectin). J Biol Chem 1988; 263 (30) 15454-15461
  • 41 Booth NA, Simpson AJ, Croll A, Bennett B, MacGregor IR. Plasminogen activator inhibitor (PAI-1) in plasma and platelets. Br J Haematol 1988; 70 (03) 327-333
  • 42 Mutch NJ, Thomas L, Moore NR, Lisiak KM, Booth NA. TAFIa, PAI-1 and alpha-antiplasmin: complementary roles in regulating lysis of thrombi and plasma clots. J Thromb Haemost 2007; 5 (04) 812-817
  • 43 Bastard JP, Piéroni L. Plasma plasminogen activator inhibitor 1, insulin resistance and android obesity. Biomed Pharmacother 1999; 53 (10) 455-461
  • 44 Erickson LA, Ginsberg MH, Loskutoff DJ. Detection and partial characterization of an inhibitor of plasminogen activator in human platelets. J Clin Invest 1984; 74 (04) 1465-1472
  • 45 Robbie LA, Bennett B, Croll AM, Brown PA, Booth NA. Proteins of the fibrinolytic system in human thrombi. Thromb Haemost 1996; 75 (01) 127-133
  • 46 Alessi MC, Chomiki N, Berthier R, Schweitzer A, Fossat C, Juhan-Vague I. Detection of plasminogen activator inhibitor-1 (PAI-1) mRNA in human megakaryocytes by in situ hybridization. Thromb Haemost 1994; 72 (06) 931-936
  • 47 Brogren H, Karlsson L, Andersson M, Wang L, Erlinge D, Jern S. Platelets synthesize large amounts of active plasminogen activator inhibitor 1. Blood 2004; 104 (13) 3943-3948
  • 48 Brogren H, Wallmark K, Deinum J, Karlsson L, Jern S. Platelets retain high levels of active plasminogen activator inhibitor 1. PLoS One 2011; 6 (11) e26762
  • 49 Nordenhem A, Wiman B. Plasminogen activator inhibitor-1 (PAI-1) content in platelets from healthy individuals genotyped for the 4G/5G polymorphism in the PAI-1 gene. Scand J Clin Lab Invest 1997; 57 (05) 453-461
  • 50 Alessi MC, Peiretti F, Morange P, Henry M, Nalbone G, Juhan-Vague I. Production of plasminogen activator inhibitor 1 by human adipose tissue: possible link between visceral fat accumulation and vascular disease. Diabetes 1997; 46 (05) 860-867
  • 51 Pieters M, Barnard SA, Loots DT, Rijken DC. The effects of residual platelets in plasma on plasminogen activator inhibitor-1 and plasminogen activator inhibitor-1-related assays. PLoS One 2017; 12 (02) e0171271
  • 52 Konkle BA, Schick PK, He X, Liu RJ, Mazur EM. Plasminogen activator inhibitor-1 mRNA is expressed in platelets and megakaryocytes and the megakaryoblastic cell line CHRF-288. Arterioscler Thromb 1993; 13 (05) 669-674
  • 53 Kohler HP, Grant PJ. Plasminogen-activator inhibitor type 1 and coronary artery disease. N Engl J Med 2000; 342 (24) 1792-1801
  • 54 Eriksson P, Reynisdottir S, Lönnqvist F, Stemme V, Hamsten A, Arner P. Adipose tissue secretion of plasminogen activator inhibitor-1 in non-obese and obese individuals. Diabetologia 1998; 41 (01) 65-71
  • 55 Hoekstra T, Geleijnse JM, Schouten EG, Kluft C. Diurnal variation in PAI-1 activity predominantly confined to the 4G-allele of the PAI-1 gene. Thromb Haemost 2002; 88 (05) 794-798
  • 56 van der Bom JG, Bots ML, Haverkate F, Kluft C, Grobbee DE. The 4G5G polymorphism in the gene for PAI-1 and the circadian oscillation of plasma PAI-1. Blood 2003; 101 (05) 1841-1844
  • 57 Kathiresan S, Gabriel SB, Yang Q. et al. Comprehensive survey of common genetic variation at the plasminogen activator inhibitor-1 locus and relations to circulating plasminogen activator inhibitor-1 levels. Circulation 2005; 112 (12) 1728-1735
  • 58 Festa A, D'Agostino Jr R, Rich SS, Jenny NS, Tracy RP, Haffner SM. Promoter (4G/5G) plasminogen activator inhibitor-1 genotype and plasminogen activator inhibitor-1 levels in blacks, Hispanics, and non-Hispanic whites: the Insulin Resistance Atherosclerosis Study. Circulation 2003; 107 (19) 2422-2427
  • 59 Krishnamurti C, Tang DB, Barr CF, Alving BM. Plasminogen activator and plasminogen activator inhibitor activities in a reference population. Am J Clin Pathol 1988; 89 (06) 747-752
  • 60 Huebner BR, Moore EE, Moore HB. et al. Thrombin stimulates increased plasminogen activator inhibitor-1 release from liver compared to lung endothelium. J Surg Res 2018; 225: 1-5
  • 61 Lucore CL, Fujii S, Wun TC, Sobel BE, Billadello JJ. Regulation of the expression of type 1 plasminogen activator inhibitor in Hep G2 cells by epidermal growth factor. J Biol Chem 1988; 263 (31) 15845-15848
  • 62 Sawdey MS, Loskutoff DJ. Regulation of murine type 1 plasminogen activator inhibitor gene expression in vivo. Tissue specificity and induction by lipopolysaccharide, tumor necrosis factor-alpha, and transforming growth factor-beta. J Clin Invest 1991; 88 (04) 1346-1353
  • 63 Quax PH, van den Hoogen CM, Verheijen JH. et al. Endotoxin induction of plasminogen activator and plasminogen activator inhibitor type 1 mRNA in rat tissues in vivo. J Biol Chem 1990; 265 (26) 15560-15563
  • 64 Fearns C, Loskutoff DJ. Induction of plasminogen activator inhibitor 1 gene expression in murine liver by lipopolysaccharide. Cellular localization and role of endogenous tumor necrosis factor-alpha. Am J Pathol 1997; 150 (02) 579-590
  • 65 Simpson AJ, Booth NA, Moore NR, Bennett B. Distribution of plasminogen activator inhibitor (PAI-1) in tissues. J Clin Pathol 1991; 44 (02) 139-143
  • 66 Morrow GB, Whyte CS, Mutch NJ. A serpin with a finger in many PAIs: PAI-1's central function in thromboinflammation and cardiovascular disease. Front Cardiovasc Med 2021; 8: 653655
  • 67 Loskutoff DJ, Samad F. The adipocyte and hemostatic balance in obesity: studies of PAI-1. Arterioscler Thromb Vasc Biol 1998; 18 (01) 1-6
  • 68 Shimomura I, Funahashi T, Takahashi M. et al. Enhanced expression of PAI-1 in visceral fat: possible contributor to vascular disease in obesity. Nat Med 1996; 2 (07) 800-803
  • 69 Morange PE, Alessi MC, Verdier M, Casanova D, Magalon G, Juhan-Vague I. PAI-1 produced ex vivo by human adipose tissue is relevant to PAI-1 blood level. Arterioscler Thromb Vasc Biol 1999; 19 (05) 1361-1365
  • 70 Bastard JP, Vidal H, Jardel C. et al. Subcutaneous adipose tissue expression of plasminogen activator inhibitor-1 gene during very low calorie diet in obese subjects. Int J Obes Relat Metab Disord 2000; 24 (01) 70-74
  • 71 Yamamoto K, Saito H. A pathological role of increased expression of plasminogen activator inhibitor-1 in human or animal disorders. Int J Hematol 1998; 68 (04) 371-385
  • 72 Collet JP, Montalescot G, Vicaut E. et al. Acute release of plasminogen activator inhibitor-1 in ST-segment elevation myocardial infarction predicts mortality. Circulation 2003; 108 (04) 391-394
  • 73 Kanji R, Gue YX, Farag MF, Spencer NH, Mutch NJ, Gorog DA. Determinants of endogenous fibrinolysis in whole blood under high shear in patients with myocardial infarction. J Am Coll Cardiol Basic Trans Science 2022; 7 (11) 1070-1082
  • 74 Vaughan DE, Lazos SA, Tong K. Angiotensin II regulates the expression of plasminogen activator inhibitor-1 in cultured endothelial cells. A potential link between the renin-angiotensin system and thrombosis. J Clin Invest 1995; 95 (03) 995-1001
  • 75 Andreotti F, Davies GJ, Hackett DR. et al. Major circadian fluctuations in fibrinolytic factors and possible relevance to time of onset of myocardial infarction, sudden cardiac death and stroke. Am J Cardiol 1988; 62 (09) 635-637
  • 76 Brown NJ, Agirbasli MA, Williams GH, Litchfield WR, Vaughan DE. Effect of activation and inhibition of the renin-angiotensin system on plasma PAI-1. Hypertension 1998; 32 (06) 965-971
  • 77 Drinane MC, Sherman JA, Hall AE, Simons M, Mulligan-Kehoe MJ. Plasminogen and plasmin activity in patients with coronary artery disease. J Thromb Haemost 2006; 4 (06) 1288-1295
  • 78 de Paula Sabino A, Ribeiro DD, Domingueti CP. et al. Plasminogen activator inhibitor-1 4G/5G promoter polymorphism and PAI-1 plasma levels in young patients with ischemic stroke. Mol Biol Rep 2011; 38 (08) 5355-5360
  • 79 Stefansson S, Lawrence DA, Argraves WS. Plasminogen activator inhibitor-1 and vitronectin promote the cellular clearance of thrombin by low density lipoprotein receptor-related proteins 1 and 2. J Biol Chem 1996; 271 (14) 8215-8220
  • 80 Liu Y, Cheng J, Guo X. et al. The roles of PAI-1 gene polymorphisms in atherosclerotic diseases: a systematic review and meta-analysis involving 149,908 subjects. Gene 2018; 673: 167-173
  • 81 Schneiderman J, Sawdey MS, Keeton MR. et al. Increased type 1 plasminogen activator inhibitor gene expression in atherosclerotic human arteries. Proc Natl Acad Sci U S A 1992; 89 (15) 6998-7002
  • 82 Lupu F, Bergonzelli GE, Heim DA. et al. Localization and production of plasminogen activator inhibitor-1 in human healthy and atherosclerotic arteries. Arterioscler Thromb 1993; 13 (07) 1090-1100
  • 83 Raghunath PN, Tomaszewski JE, Brady ST, Caron RJ, Okada SS, Barnathan ES. Plasminogen activator system in human coronary atherosclerosis. Arterioscler Thromb Vasc Biol 1995; 15 (09) 1432-1443
  • 84 Chomiki N, Henry M, Alessi MC, Anfosso F, Juhan-Vague I. Plasminogen activator inhibitor-1 expression in human liver and healthy or atherosclerotic vessel walls. Thromb Haemost 1994; 72 (01) 44-53
  • 85 Akhter MS, Biswas A, Ranjan R. et al. Plasminogen activator inhibitor-1 (PAI-1) gene 4G/5G promoter polymorphism is seen in higher frequency in the Indian patients with deep vein thrombosis. Clin Appl Thromb Hemost 2010; 16 (02) 184-188
  • 86 Prabhudesai A, Shetty S, Ghosh K, Kulkarni B. Investigation of plasminogen activator inhibitor-1 (PAI-1) 4G/5G promoter polymorphism in Indian venous thrombosis patients: a case-control study. Eur J Haematol 2017; 99 (03) 249-254
  • 87 Sartori MT, Danesin C, Saggiorato G. et al. The PAI-1 gene 4G/5G polymorphism and deep vein thrombosis in patients with inherited thrombophilia. Clin Appl Thromb Hemost 2003; 9 (04) 299-307
  • 88 Tang J, Zhu W, Mei X, Zhang Z. Plasminogen activator inhibitor-1: a risk factor for deep vein thrombosis after total hip arthroplasty. J Orthop Surg Res 2018; 13 (01) 8
  • 89 Meltzer ME, Lisman T, de Groot PG. et al. Venous thrombosis risk associated with plasma hypofibrinolysis is explained by elevated plasma levels of TAFI and PAI-1. Blood 2010; 116 (01) 113-121
  • 90 Peverill RE, Teede HJ, Malan E, Kotsopoulos D, Smolich JJ, McGrath BP. Relationship of waist and hip circumference with coagulation and fibrinolysis in postmenopausal women. Clin Sci (Lond) 2007; 113 (09) 383-391
  • 91 Mavri A, Stegnar M, Krebs M, Sentocnik JT, Geiger M, Binder BR. Impact of adipose tissue on plasma plasminogen activator inhibitor-1 in dieting obese women. Arterioscler Thromb Vasc Biol 1999; 19 (06) 1582-1587
  • 92 Sylvan A, Rutegård JN, Janunger KG, Sjölund B, Nilsson TK. Normal plasminogen activator inhibitor levels at long-term follow-up after jejuno-ileal bypass surgery in morbidly obese individuals. Metabolism 1992; 41 (12) 1370-1372
  • 93 Skurk T, Lee YM, Nicuta-Rölfs TO, Haastert B, Wirth A, Hauner H. Effect of the angiotensin II receptor blocker candesartan on fibrinolysis in patients with mild hypertension. Diabetes Obes Metab 2004; 6 (01) 56-62
  • 94 Mavri A, Alessi MC, Bastelica D. et al. Subcutaneous abdominal, but not femoral fat expression of plasminogen activator inhibitor-1 (PAI-1) is related to plasma PAI-1 levels and insulin resistance and decreases after weight loss. Diabetologia 2001; 44 (11) 2025-2031
  • 95 Estellés A, Dalmau J, Falcó C. et al. Plasma PAI-1 levels in obese children–effect of weight loss and influence of PAI-1 promoter 4G/5G genotype. Thromb Haemost 2001; 86 (02) 647-652
  • 96 Crandall DL, Quinet EM, El Ayachi S. et al. Modulation of adipose tissue development by pharmacological inhibition of PAI-1. Arterioscler Thromb Vasc Biol 2006; 26 (10) 2209-2215
  • 97 Wang L, Chen L, Liu Z. et al. PAI-1 exacerbates white adipose tissue dysfunction and metabolic dysregulation in high fat diet-induced obesity. Front Pharmacol 2018; 9: 1087
  • 98 Eckel RH, Alberti KG, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet 2010; 375 (9710): 181-183
  • 99 Saklayen MG. The global epidemic of the metabolic syndrome. Curr Hypertens Rep 2018; 20 (02) 12
  • 100 Vague P, Juhan-Vague I, Aillaud MF. et al. Correlation between blood fibrinolytic activity, plasminogen activator inhibitor level, plasma insulin level, and relative body weight in normal and obese subjects. Metabolism 1986; 35 (03) 250-253
  • 101 Agewall S, Bokemark L, Wikstrand J, Lindahl A, Fagerberg B. Insulin sensitivity and hemostatic factors in clinically healthy 58-year-old men. Thromb Haemost 2000; 84 (04) 571-575
  • 102 Anand SS, Yi Q, Gerstein H. et al; Study of Health Assessment and Risk in Ethnic Groups, Study of Health Assessment and Risk Evaluation in Aboriginal Peoples Investigators. Relationship of metabolic syndrome and fibrinolytic dysfunction to cardiovascular disease. Circulation 2003; 108 (04) 420-425
  • 103 Alessi MC, Nicaud V, Scroyen I. et al; DESIR Study Group. Association of vitronectin and plasminogen activator inhibitor-1 levels with the risk of metabolic syndrome and type 2 diabetes mellitus. Results from the D.E.S.I.R. prospective cohort. Thromb Haemost 2011; 106 (03) 416-422
  • 104 Ingelsson E, Pencina MJ, Tofler GH. et al. Multimarker approach to evaluate the incidence of the metabolic syndrome and longitudinal changes in metabolic risk factors: the Framingham Offspring Study. Circulation 2007; 116 (09) 984-992
  • 105 Thögersen AM, Jansson JH, Boman K. et al. High plasminogen activator inhibitor and tissue plasminogen activator levels in plasma precede a first acute myocardial infarction in both men and women: evidence for the fibrinolytic system as an independent primary risk factor. Circulation 1998; 98 (21) 2241-2247
  • 106 Festa A, D'Agostino Jr R, Tracy RP, Haffner SM, Insulin Resistance Atherosclerosis S. Insulin Resistance Atherosclerosis Study. Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes: the Insulin Resistance Atherosclerosis Study. Diabetes 2002; 51 (04) 1131-1137
  • 107 Juhan-Vague I, Thompson SG, Jespersen J. The ECAT Angina Pectoris Study Group. Involvement of the hemostatic system in the insulin resistance syndrome. A study of 1500 patients with angina pectoris. Arterioscler Thromb 1993; 13 (12) 1865-1873
  • 108 Mertens I, Verrijken A, Michiels JJ, Van der Planken M, Ruige JB, Van Gaal LF. Among inflammation and coagulation markers, PAI-1 is a true component of the metabolic syndrome. Int J Obes 2006; 30 (08) 1308-1314
  • 109 Mancia G, Fagard R, Narkiewicz K. et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J 2013; 34 (28) 2159-2219
  • 110 Eksteen P, Pieters M, de Lange Z, Kruger HS. The association of clot lysis time with total obesity is partly independent from the association of PAI-1 with central obesity in African adults. Thromb Res 2015; 136 (02) 415-421
  • 111 Lalić K, Jotić A, Rajković N. et al. Altered daytime fluctuation pattern of plasminogen activator inhibitor 1 in type 2 diabetes patients with coronary artery disease: a strong association with persistently elevated plasma insulin, increased insulin resistance, and abdominal obesity. Int J Endocrinol 2015; 2015: 390185
  • 112 Meigs JB, Mittleman MA, Nathan DM. et al. Hyperinsulinemia, hyperglycemia, and impaired hemostasis: the Framingham Offspring Study. JAMA 2000; 283 (02) 221-228
  • 113 Kruithof EK. Regulation of plasminogen activator inhibitor type 1 gene expression by inflammatory mediators and statins. Thromb Haemost 2008; 100 (06) 969-975
  • 114 Gavriilaki E, Gkaliagkousi E, Nikolaidou B, Triantafyllou G, Chatzopoulou F, Douma S. Increased thrombotic and impaired fibrinolytic response to acute exercise in patients with essential hypertension: the effect of treatment with an angiotensin II receptor blocker. J Hum Hypertens 2014; 28 (10) 606-609
  • 115 Poli KA, Tofler GH, Larson MG. et al. Association of blood pressure with fibrinolytic potential in the Framingham offspring population. Circulation 2000; 101 (03) 264-269
  • 116 Eliasson M, Jansson JH, Nilsson P, Asplund K. Increased levels of tissue plasminogen activator antigen in essential hypertension. A population-based study in Sweden. J Hypertens 1997; 15 (04) 349-356
  • 117 Makris T, Stavroulakis G, Papadopoulos D. et al. White coat hypertension and haemostatic/fibrinolytic balance disorders. Eur Cytokine Netw 2006; 17 (02) 137-141
  • 118 Coban E, Ozdogan M. The plasma levels of plasminogen activator inhibitor-1 in subjects with white coat hypertension. Int J Clin Pract 2004; 58 (06) 541-544
  • 119 Tiryaki O, Buyukhatipoglu H, Usalan C. Plasma plasminogen activator inhibitor 1 (PAI-1) and P-selectin levels in urgent hypertension: effect of single dose captopril and nifedipine on fibrinolytic activity. Clin Exp Hypertens 2010; 32 (06) 347-351
  • 120 Armas-Hernández MJ, Hernández-Hernández R, Armas-Padilla MC. et al. Fibrinolytic system in normotensive subjects and hypertensive patients. Am J Ther 2007; 14 (02) 177-182
  • 121 Lieb W, Larson MG, Benjamin EJ. et al. Multimarker approach to evaluate correlates of vascular stiffness: the Framingham Heart Study. Circulation 2009; 119 (01) 37-43
  • 122 Zahran M, Nasr FM, Metwaly AA, El-Sheikh N, Khalil NS, Harba T. The role of hemostatic factors in atherosclerosis in patients with chronic renal disease. Electron Physician 2015; 7 (05) 1270-1276
  • 123 Björck HM, Eriksson P, Alehagen U. et al. Gender-specific association of the plasminogen activator inhibitor-1 4G/5G polymorphism with central arterial blood pressure. Am J Hypertens 2011; 24 (07) 802-808
  • 124 Peng H, Yeh F, de Simone G. et al. Relationship between plasma plasminogen activator inhibitor-1 and hypertension in American Indians: findings from the Strong Heart Study. J Hypertens 2017; 35 (09) 1787-1793
  • 125 Meduri GU, Annane D, Chrousos GP, Marik PE, Sinclair SE. Activation and regulation of systemic inflammation in ARDS: rationale for prolonged glucocorticoid therapy. Chest 2009; 136 (06) 1631-1643
  • 126 Rocco PR, Dos Santos C, Pelosi P. Lung parenchyma remodeling in acute respiratory distress syndrome. Minerva Anestesiol 2009; 75 (12) 730-740
  • 127 Gralinski LE, Bankhead III A, Jeng S. et al. Mechanisms of severe acute respiratory syndrome coronavirus-induced acute lung injury. MBio 2013; 4 (04) e00271-13
  • 128 Bertozzi P, Astedt B, Zenzius L. et al. Depressed bronchoalveolar urokinase activity in patients with adult respiratory distress syndrome. N Engl J Med 1990; 322 (13) 890-897
  • 129 Prabhakaran P, Ware LB, White KE, Cross MT, Matthay MA, Olman MA. Elevated levels of plasminogen activator inhibitor-1 in pulmonary edema fluid are associated with mortality in acute lung injury. Am J Physiol Lung Cell Mol Physiol 2003; 285 (01) L20-L28
  • 130 Ware LB, Matthay MA, Parsons PE, Thompson BT, Januzzi JL, Eisner MD. National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome Clinical Trials Network. Pathogenetic and prognostic significance of altered coagulation and fibrinolysis in acute lung injury/acute respiratory distress syndrome. Crit Care Med 2007; 35 (08) 1821-1828
  • 131 Song Y, Lynch SV, Flanagan J. et al. Increased plasminogen activator inhibitor-1 concentrations in bronchoalveolar lavage fluids are associated with increased mortality in a cohort of patients with Pseudomonas aeruginosa. Anesthesiology 2007; 106 (02) 252-261
  • 132 Determann RM, Millo JL, Garrard CS, Schultz MJ. Bronchoalveolar levels of plasminogen activator inhibitor-1 and soluble tissue factor are sensitive and specific markers of pulmonary inflammation. Intensive Care Med 2006; 32 (06) 946-947
  • 133 El Solh AA, Bhora M, Pineda L, Aquilina A, Abbetessa L, Berbary E. Alveolar plasminogen activator inhibitor-1 predicts ARDS in aspiration pneumonitis. Intensive Care Med 2006; 32 (01) 110-115
  • 134 Olman MA, Simmons WL, White KE, Matthay MA. Pulmonary edema fluid levels of type 1 plasminogen activator inhibitor (PAI-1) predict a poor prognosis in clinical acute lung injury. Am J Respir Crit Care Med 2001; •••: 163
  • 135 Idell S, James KK, Levin EG. et al. Local abnormalities in coagulation and fibrinolytic pathways predispose to alveolar fibrin deposition in the adult respiratory distress syndrome. J Clin Invest 1989; 84 (02) 695-705
  • 136 Bompard F, Monnier H, Saab I. et al. Pulmonary embolism in patients with COVID-19 pneumonia. Eur Respir J 2020; 56 (01) 2001365
  • 137 Lodigiani C, Iapichino G, Carenzo L. et al; Humanitas COVID-19 Task Force. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb Res 2020; 191: 9-14
  • 138 Klok FA, Kruip MJHA, van der Meer NJM. et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res 2020; 191: 145-147
  • 139 Llitjos JF, Leclerc M, Chochois C. et al. High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients. J Thromb Haemost 2020; 18 (07) 1743-1746
  • 140 Kunutsor SK, Laukkanen JA. Incidence of venous and arterial thromboembolic complications in COVID-19: a systematic review and meta-analysis. Thromb Res 2020; 196: 27-30
  • 141 Borczuk AC, Salvatore SP, Seshan SV. et al. COVID-19 pulmonary pathology: a multi-institutional autopsy cohort from Italy and New York City. Mod Pathol 2020; 33 (11) 2156-2168
  • 142 He L, Ding Y, Zhang Q. et al. Expression of elevated levels of pro-inflammatory cytokines in SARS-CoV-infected ACE2+ cells in SARS patients: relation to the acute lung injury and pathogenesis of SARS. J Pathol 2006; 210 (03) 288-297
  • 143 Whyte CS, Simpson M, Morrow GB. et al. The suboptimal fibrinolytic response in COVID-19 is dictated by high PAI-1. J Thromb Haemost 2022; 20 (10) 2394-2406
  • 144 Juneja GK, Castelo M, Yeh CH. et al; COVID-BEACONS investigators. Biomarkers of coagulation, endothelial function, and fibrinolysis in critically ill patients with COVID-19: a single-center prospective longitudinal study. J Thromb Haemost 2021; 19 (06) 1546-1557
  • 145 Henry BM, Cheruiyot I, Benoit JL. et al. Circulating levels of tissue plasminogen activator and plasminogen activator inhibitor-1 are independent predictors of coronavirus disease 2019 severity: a prospective, observational study. Semin Thromb Hemost 2021; 47 (04) 451-455
  • 146 Queiroz MAF, Neves PFMD, Lima SS. et al. Cytokine profiles associated with acute COVID-19 and long COVID-19 syndrome. Front Cell Infect Microbiol 2022; 12: 922422
  • 147 von Meijenfeldt FA, Havervall S, Adelmeijer J. et al. Prothrombotic changes in patients with COVID-19 are associated with disease severity and mortality. Res Pract Thromb Haemost 2020; 5 (01) 132-141
  • 148 Morrow GB, Whyte CS, Mutch NJ. Functional plasminogen activator inhibitor 1 is retained on the activated platelet membrane following platelet activation. Haematologica 2020; 105 (12) 2824-2833