Transfusionsmedizin 2017; 7(01): 18-29
DOI: 10.1055/s-0043-100280
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Sicherheit von Blutprodukten – ein Update 2016

Blood Safety – Update 2016
Michael Schmidt
DRK-Blutspendedienst, Frankfurt am Main
,
Erhard Seifried
DRK-Blutspendedienst, Frankfurt am Main
› Author Affiliations
Further Information

Publication History

Publication Date:
13 March 2017 (online)

Zusammenfassung

Die Vermeidung transfusionsbedingter Virusinfektionen ist ein wesentliches Ziel der Transfusionsmedizin. Neben einer sorgfältigen Spenderbefragung nach möglichen Infektionsrisiken hat gerade die Entwicklung von kombinierten diagnostischen Antigen-/Antikörper-Assays (Assays der 4. Generation) sowie die Einführung der Polymerase-Kettenreaktion-(PCR-)Untersuchungen in das Spenderscreening, mit dazu beigetragen, das diagnostische Fenster insbesondere für Hepatitis A, Hepatitis B, Hepatitis C, HIV und Parvovirus B19 auf ein Minimum zu reduzieren. Dabei liegt der Schwerpunkt sowohl auf der Vermeidung von Virusübertragungen durch klassische Pathogene, wie Hepatitis-B-Viren (HBV), Hepatitis-C-Viren (HCV) oder Humane Immundefizienz-Viren (HIV), als auch auf neuen Pathogenen wie Hepatitis-E-Viren, West-Nil-Viren oder Dengue-Viren. Aufgrund der starken Reiseaktivitäten können sich Pathogene innerhalb von 48 h weltweit verbreiten, sodass auf der einen Seite flexible modifizierbare Screeningsysteme erforderlich sind und auf der anderen Seite eine generelle Pathogeninaktivierung mehr und mehr an Bedeutung gewinnt. Aufgrund der Fortschritte in den letzten Jahren sind die Blutprodukte gegenwärtig auf dem höchsten Sicherheitsstand der Medizingeschichte, sodass Übertragungen von HCV oder HIV-1 kein medizinisch reales Risiko bei der Anwendung von Blutprodukten mehr darstellen. Neben der Erhöhung der Sicherheit gegenüber viralen Pathogenen konnte in den letzten Jahren auch die Sicherheit gegenüber bakteriellen Kontaminationen, durch die Einführung von Schnelltestmethoden zur Testung bakterieller Kontaminationen von Thrombozytenkonzentraten, und auch die Einführung der Pathogeninaktivierung einen wesentlichen Beitrag leisten, auch diese Risiken weiter zu reduzieren.

Abstract

The prevention of transfusion-induced viral infections is a major goal of transfusion medicine. In addition to a donor questionnaire on possible infection risks, the development of combined diagnostic antigen/antibody assays (fourth generation assays) as well as the introduction of polymerase chain reaction (PCR) investigations into donor screening reduced the residual diagnostic window period especially for hepatitis A virus, for hepatitis B virus, for hepatitis C virus, for HIV and for parvovirus B19 to a minimum. The focus is not only on the prevention of viral transmissions by classical pathogens such as hepatitis B viruses, hepatitis C viruses or human immunodeficiency viruses, but also on new pathogens such as hepatitis E viruses, West Nile viruses or dengue viruses. Due to extended travel activities of human people, pathogens can spread rapidly within 48 hours around the world, so that, on the one hand, flexible modifiable screening systems are necessary or, on the other hand, a general pathogen inactivation becomes more and more important. Due to progress in recent years, blood products are currently at the highest level of safety, so that transfusion-related transmissions of HCV or HIV-1 are not any longer a real medical risk in transfusion medicine. In addition to the improved blood safety against viral pathogens, the residual risk against bacterial contaminations especially in platelets was reduced by the introduction of rapid bacterial detection tests as well as by pathogen inactivation methods.

 
  • Literatur

  • 1 Roth WK, Busch MP, Schuller A. et al. International survey on NAT testing of blood donations: expanding implementation and yield from 1999 to 2009. Vox Sang 2012; 102: 82-90
  • 2 Letendre S. Central nervous system complications in HIV disease: HIV-associated neurocognitive disorder. Top Antivir Med 2011; 19: 137-142
  • 3 Pitchenik AE, Fischl MA, Dickinson GM. et al. Opportunistic infections and Kaposiʼs sarcoma among Haitians: evidence of a new acquired immunodeficiency state. Ann Intern Med 1983; 98: 277-284
  • 4 Montagnier L. Lymphadenopathy-associated virus: from molecular biology to pathogenicity. Ann Intern Med 1985; 103: 689-693
  • 5 Montagnier L. Le virus de lʼimmunodeficience humaine. La Revue du praticien 1987; 37: 2553-2558
  • 6 Gallo RC. Kaplan memorial lecture. The family of human lymphotropic retroviruses called HTLV: HTLV-I in adult T-cell leukemia (ATL), HTLV-II in hairy cell leukemias, and HTLV-III in AIDS. Princess Takamatsu Symp 1984; 15: 13-38
  • 7 Broder S, Gallo RC. A pathogenic retrovirus (HTLV-III) linked to AIDS. N Engl J Med 1984; 311: 1292-1297
  • 8 McFerran JB, McNulty MS. Modern diagnostic methods in practice: aids to diagnosis of virological diseases. Br Vet J 1981; 137: 455-463
  • 9 Seifried E, Pindur G, Stötter H. et al. HTLV III antibodies and immunological alterations in hemophilia patients. Klin Wochenschr 1986; 64: 115-124
  • 10 Gedye R. German AIDS scandal infects Europe. BMJ 1993; 307: 1229
  • 11 Zeiler T, Kretschmer V. Blutspenderbefragung zum Thema „Aufwandsentschadigung fur Blutspender“. Infusionsther Transfusionsmed 1995; 22: 19-24
  • 12 Kretschmer V. Infektionsrisiken von Blut und Blutprodukten im Zeichen des sogenannten AIDS-Skandals. Infusionsther Transfusionsmed 1993; 20: 286-290
  • 13 Vermeulen M, Lelie N, Sykes W. et al. Impact of individual-donation nucleic acid testing on risk of human immunodeficiency virus, hepatitis B virus, and hepatitis C virus transmission by blood transfusion in South Africa. Transfusion 2009; 49: 1115-1125
  • 14 Hourfar MK, Jork C, Schottstedt V. et al. Experience of German Red Cross blood donor services with nucleic acid testing: results of screening more than 30 million blood donations for human immunodeficiency virus-1, hepatitis C virus, and hepatitis B virus. Transfusion 2008; 48: 1558-1566
  • 15 Schmidt M, Korn K, Nubling CM. et al. First transmission of human immunodeficiency virus Type 1 by a cellular blood product after mandatory nucleic acid screening in Germany. Transfusion 2009; 49: 1836-1844
  • 16 Chudy M, Weber-Schehl M, Pichl L. et al. Blood screening nucleic acid amplification tests for human immunodeficiency virus type 1 may require two different amplification targets. Transfusion 2012; 52: 431-439
  • 17 Engler K, Lessard D, Lebouché B. A review of HIV-specific patient-reported outcome measures. Patient 2016; DOI: 10.1007/s40271-016-0195-7.
  • 18 Blumberg BS, Hesser JE, Economidou I. et al. The variety of responses within a community to infection with Australia (hepatitis B) antigen. Dev Biol Stand 1975; 30: 270-283
  • 19 Kucharska M, Inglot M, Szymczak A. et al. Co-infection of the hepatitis C virus with other blood-borne and hepatotropic viruses among hemophilia patients in Poland. Hepat Mon 2016; 16: e35658
  • 20 Madonia S, Orlando E, Madonia G. et al. HCV/HBV coinfection: The dark side of DAAs treatment?. Liver Int 2016; DOI: 10.1111/liv.13342.
  • 21 Allain JP, Mihaljevic I, Gonzalez-Fraile MI. et al. Infectivity of blood products from donors with occult hepatitis B virus infection. Transfusion 2013; 53: 1405-1415
  • 22 Allain JP. Occult hepatitis B virus infection: implications in transfusion. Vox Sang 2004; 86: 83-91
  • 23 Candotti D, Grabarczyk P, Ghiazza P. et al. Characterization of occult hepatitis B virus from blood donors carrying genotype A2 or genotype D strains. J Hepatol 2008; 49: 537-547
  • 24 Abushady EA, Gameel MM, Klena JD. et al. HBV vaccine efficacy and detection and genotyping of vaccinee asymptomatic breakthrough HBV infection in Egypt. World J Hepatol 2011; 3: 147-156
  • 25 FitzSimons D, Hendrickx G, Vorsters A. et al. Hepatitis B vaccination: a completed schedule enough to control HBV lifelong? Milan, Italy, 17-18 November 2011. Vaccine 2013; 31: 584-590
  • 26 Zhang L, Yan BY, Li MS. et al. [Preliminary analysis on the prevalence and causes of breakthrough hepatitis B virus infection among children in Shandong province, China]. Zhonghua Yu Fang Yi Xue Za Zhi 2013; 47: 933-939
  • 27 Biswas R, Tabor E, Hsia CC. et al. Comparative sensitivity of HBV NATs and HBsAg assays for detection of acute HBV infection. Transfusion 2003; 43: 788-798
  • 28 Funk M, Lohmann A, Spranger R. Hemovigilance report of the Paul-Ehrlich-Institute 2013 – 2014. Langen: Paul-Ehrlich-Institut; 2015
  • 29 Funk MB, Heiden M, Volkers P. et al. Evaluation of risk minimisation measures for blood components – based on reporting rates of transfusion-transmitted reactions (1997–2013). Transfus Med Hemother 2015; 42: 240-246
  • 30 Kretzschmar E, Chudy M, Nubling CM. et al. First case of hepatitis C virus transmission by a red blood cell concentrate after introduction of nucleic acid amplification technique screening in Germany: a comparative study with various assays. Vox Sang 2007; 92: 297-301
  • 31 Nakamuta M, Shimohashi N, Tada S. et al. Serum levels of HCV RNA and core protein before and after incubation at 37 degrees C for 24 h. Hepatol Res 2001; 19: 254-262
  • 32 Boglione L, Pinna SM, Cardellino CS. et al. Treatment with daclatasvir and sofosbuvir for 24 weeks without ribavirin in cirrhotic patients who failed first-generation protease inhibitors. Infection 2016; DOI: 10.1007/s15010-016-0962-3.
  • 33 Ishigami M, Hayashi K, Honda T. et al. Real world data of daclatasvir and asunaprevir combination therapy for HCV genotype 1b infection in patients with renal dysfunction. Clin Gastroenterol Hepatol 2016; DOI: 10.1016/j.cgh.2016.12.009.
  • 34 Zeuzem S, Dusheiko GM, Salupere R. et al. Sofosbuvir and ribavirin in HCV genotypes 2 and 3. N Engl J Med 2014; 370: 1993-2001
  • 35 Ray R, Aggarwal R, Salunke PN. et al. Hepatitis E virus genome in stools of hepatitis patients during large epidemic in north India. Lancet 1991; 338: 783-784
  • 36 Atabek ME, Fýndýk D, Gulyuz A. et al. Prevalence of anti-HAV and anti-HEV antibodies in Konya, Turkey. Health Policy 2004; 67: 265-269
  • 37 Ibrahim EH, Abdelwahab SF, Nady S. et al. Prevalence of anti-HEV IgM among blood donors in Egypt. Egypt J Immunol 2011; 18: 47-58
  • 38 Sauleda S, Ong E, Bes M. et al. Seroprevalence of hepatitis E virus (HEV) and detection of HEV RNA with a transcription-mediated amplification assay in blood donors from Catalonia (Spain). Transfusion 2015; 55: 972-979
  • 39 Goumba CM, Yandoko-Nakoune ER, Komas NP. A fatal case of acute hepatitis E among pregnant women, Central African Republic. BMC Res Notes 2010; 3: 103
  • 40 Owada T, Kaneko M, Matsumoto C. et al. Establishment of culture systems for Genotypes 3 and 4 hepatitis E virus (HEV) obtained from human blood and application of HEV inactivation using a pathogen reduction technology system. Transfusion 2014; 54: 2820-2827
  • 41 Matsubayashi K, Kang J-H, Sakata H. et al. A case of transfusion-transmitted hepatitis E caused by blood from a donor infected with hepatitis E virus via zoonotic food-borne route. Transfusion 2008; 48: 1368-1375
  • 42 Juhl D, Baylis SA, Blumel J. et al. Seroprevalence and incidence of hepatitis E virus infection in German blood donors. Transfusion 2014; 54: 49-56
  • 43 Baylis SA, Corman VM, Ong E. et al. Hepatitis E viral loads in plasma pools for fractionation. Transfusion 2016; 56: 2532-2537
  • 44 Loyrion E, Trouve-Buisson T, Pouzol P. et al. Hepatitis E virus infection after platelet transfusion in an immunocompetent trauma patient. Emerg Infect Dis 2017; 23: 146-147
  • 45 Bradley DW. Hepatitis A virus infection: pathogenesis and serodiagnosis of acute disease. J Virol Methods 1980; 2: 31-45
  • 46 Wolk DM, Jones MF, Rosenblatt JE. Laboratory diagnosis of viral hepatitis. Infect Dis Clin North Am 2001; 15: 1109-1126
  • 47 Heitmann A, Laue T, Schottstedt V. et al. Occurrence of hepatitis A virus genotype III in Germany requires the adaptation of commercially available diagnostic test systems. Transfusion 2005; 45: 1097-1105
  • 48 Zayc-Schmidt EM, Pichl L, Laue T. et al. Travel-related hepatitis A detected by hepatitis A virus RNA donor screening. Transfusion 2005; 45: 1037-1038
  • 49 Cossart Y. Parvovirus B19 finds a disease. Lancet 1981; 2: 988-989
  • 50 Kleinman SH, Glynn SA, Lee TH. et al. A linked donor-recipient study to evaluate parvovirus B19 transmission by blood component transfusion. Blood 2009; 114: 3677-3683
  • 51 Hourfar MK, Mayr-Wohlfart U, Themann A. et al. Recipients potentially infected with parvovirus B19 by red blood cell products. Transfusion 2011; 51: 129-136
  • 52 Boutin JP. [Chikungunya fever in La Reunion Island—2006]. Med Trop 2006; 66: 221-225
  • 53 Heilman JM, De Wolff J, Beards GM. et al. Dengue fever: a Wikipedia clinical review. Open Med 2014; 8: e105-e115
  • 54 Ramírez-Fonseca T, Segarra-Torres A, Jaume-Anselmi F. et al. Dengue fever: a rare cause of immune thrombocytopenia. Bol Asoc Med P R 2015; 107: 51-53
  • 55 Allwinn R. Significant increase in travel-associated dengue fever in Germany. Med Microbiol Immunol 2011; 200: 155-159
  • 56 Schrezenmeier H, Walther-Wenke G, Müller TH. et al. Bacterial contamination of platelet concentrates: results of a prospective multicenter study comparing pooled whole blood-derived platelets and apheresis platelets. Transfusion 2007; 47: 644-652
  • 57 de Korte D. 10 years experience with bacterial screening of platelet concentrates in the Netherlands. Transfus Med Hemother 2011; 38: 251-254
  • 58 te Boekhorst PA, Beckers EA, Vos MC. et al. Clinical significance of bacteriologic screening in platelet concentrates. Transfusion 2005; 45: 514-519
  • 59 Dreier J, Vollmer T, Kleesiek K. Novel flow cytometry-based screening for bacterial contamination of donor platelet preparations compared with other rapid screening methods. Clin Chem 2009; 55: 1492-1502
  • 60 Schmidt M, Hourfar MK, Nicol SB. et al. A comparison of three rapid bacterial detection methods under simulated real-life conditions. Transfusion 2006; 46: 1367-1373
  • 61 Irsch J, Lin L. Pathogen inactivation of platelet and plasma blood components for transfusion using the INTERCEPT blood system. Transfus Med Hemother 2011; 38: 19-31
  • 62 Kwon SY, Kim IS, Bae JE. et al. Pathogen inactivation efficacy of Mirasol PRT System and Intercept Blood System for non-leucoreduced platelet-rich plasma-derived platelets suspended in plasma. Vox Sang 2014; 107: 254-260
  • 63 Seghatchian J, Tolksdorf F. Characteristics of the THERAFLEX UV-Platelets pathogen inactivation system – an update. Transfus Apher Sci 2012; 46: 221-229
  • 64 Schmidt M, Hourfar MK, Sireis W. et al. Evaluation of the effectiveness of a pathogen inactivation technology against clinically relevant transfusion-transmitted bacterial strains. Transfusion 2015; 55: 2104-2112