Planta Med 2017; 83(09): 805-811
DOI: 10.1055/s-0043-100382
Natural Product Chemistry and Analytical Studies
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Antichlamydial Dimeric Indole Derivatives from Marine Actinomycete Rubrobacter radiotolerans

Jian Lin Li*
1   School of Pharmacy, Nantong University, Nantong, China
,
Dandan Chen*
1   School of Pharmacy, Nantong University, Nantong, China
2   Department of Pharmacy, The Second Peopleʼs Hospital of Nantong, Nantong, China
,
Lei Huang
1   School of Pharmacy, Nantong University, Nantong, China
,
Min Ni
1   School of Pharmacy, Nantong University, Nantong, China
,
Yu Zhao
1   School of Pharmacy, Nantong University, Nantong, China
,
Huizhou Fan
3   Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
,
Xiaofeng Bao
1   School of Pharmacy, Nantong University, Nantong, China
› Author Affiliations
Further Information

Publication History

received 26 September 2016
revised 19 December 2016

accepted 29 December 2016

Publication Date:
17 January 2017 (online)

Abstract

Chlamydiae are widely distributed pathogens of human populations, which can lead to serious reproductive and other health problems. In our search for novel antichlamydial metabolites from marine derived-microorganisms, one new (1) and two known (2, 3) dimeric indole derivatives were isolated from the sponge-derived actinomycete Rubrobacter radiotolerans. The chemical structures of these metabolites were elucidated by NMR spectroscopic data as well as CD calculations. All three metabolites suppressed chlamydial growth in a concentration-dependent manner. Among them, compound 1 exhibited the most effective antichlamydial activity with IC50 values of 46.6 ~ 96.4 µM in the production of infectious progeny. Compounds appeared to target the mid-stage of the chlamydial developmental cycle by interfering with reticular body replication, but not directly inactivating the infectious elementary body.

* These two authors contributed equally to this work.


Supporting Information

1H, 13C, and 2D NMR data of compound 1 and concentration-response curves for generating IC50 values of the three compounds on each Chlamydia are available as Supporting Information.

 
  • References

  • 1 Abdelrahman YM, Belland RJ. The chlamydial developmental cycle. FEMS Microbiol Rev 2005; 29: 949-959
  • 2 Stephens RS, Myers G, Eppinger M, Bavoil PM. Divergence without difference: phylogenetics and taxonomy of Chlamydia resolved. FEMS Immunol Med Microbiol 2009; 55: 115-119
  • 3 Potroz MG, Cho NJ. Natural products for the treatment of trachoma and Chlamydia trachomatis . Molecules 2015; 20: 4180-4203
  • 4 Fan H. Blindness-causing trachomatous trichiasis biomarkers sighted. Invest Ophthalmol Vis Sci 2012; 53: 2560
  • 5 Belland RJ, Ouellette SP, Gieffers J, Byrne GI. Chlamydia pneumoniae and atherosclerosis. Cell Microbiol 2004; 6: 117-127
  • 6 Grau AJ, Urbanek C, Palm F. Common infections and the risk of stroke. Nat Rev Neurol 2010; 6: 681-694
  • 7 Balin BJ, Little CS, Hammond CJ, Appelt DM, Whittum-Hudson JA, Gerard HC, Hudson AP. Chlamydophila pneumoniae and the etiology of late-onset Alzheimerʼs disease. J Alzheimers Dis 2008; 13: 371-380
  • 8 Hybiske K, Stephens RS. Mechanisms of Chlamydia trachomatis entry into nonphagocytic cells. Infect Immun 2007; 75: 3925-3934
  • 9 Hybiske K, Stephens RS. Mechanisms of host cell exit by the intracellular bacterium Chlamydia . Proc Natl Acad Sci U S A 2007; 104: 11430-11435
  • 10 Beeckman DS, De Puysseleyr L, De Puysseleyr K, Vanrompay D. Chlamydial biology and its associated virulence blockers. Crit Rev Microbiol 2014; 40: 313-328
  • 11 Sandoz KM, Rockey DD. Antibiotic resistance in Chlamydiae. Future Microbiol 2010; 5: 1427-1442
  • 12 Workowski KA, Levine WC, Wasserheit JN. Centers for Disease Control and Prevention, Atlanta, Georgia. U.S. Centers for Disease Control and Prevention guidelines for the treatment of sexually transmitted diseases: an opportunity to unify clinical and public health practice. Ann Intern Med 2002; 137: 255-262
  • 13 Workowski KA. Centers for Disease Control and Prevention Sexually Transmitted Diseases Treatment Guidelines. Clin Infect Dis 2015; 61 (Suppl. 08) S759-S762
  • 14 Hogan RJ, Mathews SA, Mukhopadhyay S, Summersgill JT, Timms P. Chlamydial persistence: beyond the biphasic paradigm. Infect Immun 2004; 72: 1843-1855
  • 15 Yokoi S, Yasuda M, Ito S, Takahashi Y, Ishihara S, Deguchi T, Maeda S, Kubota Y, Tamaki M, Fukushi H. Uncommon occurrence of fluoroquinolone resistance-associated alterations in GyrA and ParC in clinical strains of Chlamydia trachomatis . J Infect Chemother 2004; 10: 262-267
  • 16 Khachatryan AR, Besser TE, Call DR. The streptomycin-sulfadiazine-tetracycline antimicrobial resistance element of calf-adapted Escherichia coli is widely distributed among isolates from Washington state cattle. Appl Environ Microbiol 2008; 74: 391-395
  • 17 Di Francesco A, Donati M, Rossi M, Pignanelli S, Shurdhi A, Baldelli R, Cevenini R. Tetracycline-resistant Chlamydia suis isolates in Italy. Vet Rec 2008; 163: 251-252
  • 18 Binet R, Bowlin AK, Maurelli AT, Rank RG. Impact of azithromycin resistance mutations on the virulence and fitness of Chlamydia caviae in guinea pigs. Antimicrob Agents Chemother 2010; 54: 1094-1101
  • 19 Igietseme JU, Eko FO, Black CM. Chlamydia vaccines: recent developments and the role of adjuvants in future formulations. Expert Rev Vaccines 2011; 10: 1585-1596
  • 20 Mabey DC, Hu V, Bailey RL, Burton MJ, Holland MJ. Towards a safe and effective chlamydial vaccine: lessons from the eye. Vaccine 2014; 32: 1572-1578
  • 21 Bao X, Gylfe A, Sturdevant GL, Gong Z, Xu S, Caldwell HD, Elofsson M, Fan H. Benzylidene acylhydrazides inhibit chlamydial growth in a type III secretion- and iron chelation-independent manner. J Bacteriol 2014; 196: 2989-3001
  • 22 Good JA, Silver J, Nunez-Otero C, Bahnan W, Krishnan KS, Salin O, Engstrom P, Svensson R, Artursson P, Gylfe A, Bergstrom S, Almqvist F. Thiazolino 2-pyridone amide inhibitors of Chlamydia trachomatis infectivity. J Med Chem 2016; 59: 2094-2108
  • 23 Hanski L, Ausbacher D, Tiirola TM, Strom MB, Vuorela PM. Amphipathic beta2, 2-amino acid derivatives suppress infectivity and disrupt the intracellular replication cycle of Chlamydia pneumoniae . PLoS One 2016; 11: e0157306
  • 24 Horan AC, Shearer MC, Hedge V, Beyazova ML, Brodsky BC, King A, Berrie R, Cardaci K, Nimeck M. A family of novel macrocyclic lactones, the saccharocarcins produced by Saccharothrix aerocolonigenes subsp. antibiotica. I. Taxonomy, fermentation, isolation and biological properties. J Antibiot (Tokyo) 1997; 50: 119-125
  • 25 Salin O, Alakurtti S, Pohjala L, Siiskonen A, Maass V, Maass M, Yli-Kauhaluoma J, Vuorela P. Inhibitory effect of the natural product betulin and its derivatives against the intracellular bacterium Chlamydia pneumoniae . Biochem Pharmacol 2010; 80: 1141-1151
  • 26 Abdelmohsen UR, Cheng C, Reimer A, Kozjak-Pavlovic V, Ibrahim AK, Rudel T, Hentschel U, Edrada-Ebel R, Ahmed SA. Antichlamydial sterol from the red sea sponge Callyspongia aff. implexa . Planta Med 2015; 81: 382-387
  • 27 Mondol MA, Kim JH, Lee MA, Tareq FS, Lee HS, Lee YJ, Shin HJ. Ieodomycins A–D, antimicrobial fatty acids from a marine Bacillus sp. J Nat Prod 2011; 74: 1606-1612
  • 28 Li JL, Huang L, Liu J, Song Y, Gao J, Jung JH, Liu Y, Chen G. Acetylcholinesterase inhibitory dimeric indole derivatives from the marine actinomycetes Rubrobacter radiotolerans . Fitoterapia 2015; 102: 203-207