Three-dimensional (3D) imaging techniques have been developed in the medical field. In laparoscopic surgery, such techniques are widely used; they provide the surgeon with spatial information and increase the safety of surgical techniques [1–3]. In gastrointestinal endoscopy, Sakata et al. reported the efficacy of 3D imaging for improved detection of colonic lesions using simulated 3D colonoscopy [4]. However, to create a conventional 3D image, two optical axes are required.

A novel 3D imaging processor (HD-3D-A; Shinko Optical, Tokyo, Japan), which can create 3D virtual video images from conventional two-dimensional (2D) endoscopic video images, has been developed recently [5]. This imaging processor is connected to a monocular endoscopic system and converts conventional endoscopic images into a pair of images, as if they were obtained from two different points that match the operator’s convergence angle [4] (Fig. 1). This system can be used in combination with a conventional endoscope, and 3D images can be easily viewed using 3D glasses and a 3D monitor.

Here for the first time, we report the use of this 3D system in gastrointestinal endoscopy. In gastrointestinal endoscopy, the 3D image also provides the endoscopist with space perception, helping them to evaluate the status of the intestinal tract space (Video 1). In addition, we can more precisely visualize the

![Fig. 1](image) Explanation of a 3D image system. The 2D endoscopic image can be converted to a 3D image in real time.

![Video 1](image) Three-dimensional (3D) colonoscopy in a patient with a colonic adenoma. This video is presented in a side-by-side format. The 3D version can be viewed using the 3D video equipment.
shape of a gastrointestinal tumor using a 3D image compared with a 2D image (Video 1). During colonoscopy, 3D images provide visual cues to the next fold and aid in easy insertion to the cecum. Although further studies are required to demonstrate the efficacy of a 3D system in gastrointestinal endoscopies, we believe this system may have additional benefits compared with a conventional 2D endoscopy.

Endoscopy_UCTN_Code_TTT_1AQ_2AJ

Competing interests

None

The Authors

Tomoaki Matsumura¹, Hideaki Ishigami¹, Kenichiro Okimoto¹, Daisuke Maruoka¹, Tomoo Nakagawa¹, Mai Fujie², Makoto Arai³

¹ Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba City, Japan
² Clinical Engineering Center, Chiba University Hospital, Chiba City, Japan

Corresponding author

Makoto Arai, MD
Department of Gastroenterology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chiba-City, 260-8670, Japan
Fax: +81-43-2262088
araim-cib@umin.ac.jp

References


DOI https://doi.org/10.1055/s-0043-105572
Endoscopy 2017; 49: 716 – 717
© Georg Thieme Verlag KG
Stuttgart - New York
ISSN 0013-726X

ENDOSCOPY E-VIDEOS
https://eref.thieme.de/e-videos

Endoscopy E-Videos is a free access online section, reporting on interesting cases and new techniques in gastroenterological endoscopy. All papers include a high quality video and all contributions are freely accessible online.

This section has its own submission website at https://mc.manuscriptcentral.com/e-videos