Innovative delivery method using a detachable device to deliver a large polyglycolic acid sheet to a gastric ulcer perforation

Many reports have indicated the efficacy of polyglycolic acid (PGA) sheets with fibrin glue for the treatment of perforations or preventing stricture following endoscopic submucosal dissection (ESD) [1, 2]. However, the delivery method of such a thin membrane such as the PGA sheet (especially large sheets) into the stomach without getting wet has not been reported.

An 89-year-old woman was diagnosed with early gastric cancer. Following endoscopic submucosal dissection, a perforation was induced by cytomegalovirus infection (▶Fig. 1a), and accompanied by severe immune suppression due to oral administration of methotrexate for rheumatoid arthritis. A drip infusion of ganciclovir was administered for the infection.

For treatment of the perforation, we developed a novel detachable device to deliver a large, 16 cm² PGA sheet to completely cover the perforation (▶Video 1).

Two balloons (endoscopic injection sclerotherapy balloons, 11 mm in diameter, 50 mm in length; TOP Co., Tokyo, Japan) were connected by sewing together.

▶Fig. 1 Perforation site before and after treatment with polyglycolic acid sheet. a The perforation was caused by cytomegalovirus (CMV) infection after endoscopic submucosal dissection for early gastric cancer. CMV pp 65 antigen (C7-HRP) was positive. b At 7 days after treatment, the perforation site was completely covered with regenerative tissue (yellow circle), and edematous mucosa around the ulcer was improved.

▶Video 1 Innovative concept of detachable device delivery system for delivery of a large polyglycolic acid (PGA) sheet to a perforation in an endoscopic submucosal dissection (ESD) ulcer. The post-ESD ulcer floor perforation was induced by cytomegalovirus infection. Two balloons (endoscopic injection sclerotherapy balloons) were sewn together to connect them and to create a sealed space. A nasal endoscope (5 mm) was inserted through the balloons (11 mm), leaving a 3 mm concentric circular gap, into which the PGA sheet was placed. Insufflation of air into the balloons resulted in the PGA sheet being completely sealed at the junction of the two balloons. In the stomach, the balloons were deflated and the endoscope was retracted, leaving the balloons with the PGA sheet at the perforation site. The PGA sheet was then placed over the perforation site. This novel delivery system allowed the large PGA sheet to be delivered to the perforation site without getting wet.
A nasal endoscope (5 mm in diameter) was inserted through the balloons, leaving a 3 mm diameter concentric circular gap, into which the PGA sheet was placed. Insufflation of air into the balloons (red arrows) resulted in the PGA sheet being completely sealed at the junction of the two balloons (yellow circle).

Although Tsuji et al. reported a new delivery method for PGA sheets using a normal-caliber endoscope and a small-caliber endoscope inside an overtube [3], this method is rather difficult to maneuver. The current innovative concept of detachable delivery system is useful for the delivery of large PGA sheets in the digestive tract, including the lower tract, especially in proximal colon or cecal ESD.
References


Bibliography

DOI https://doi.org/10.1055/s-0043-105573
Endoscopy 2017; 49: E165–E167
© Georg Thieme Verlag KG
Stuttgart · New York
ISSN 0013-726X

ENDOSCOPY E-VIDEOS

https://eref.thieme.de/e-videos

Endoscopy E-Videos is a free access online section, reporting on interesting cases and new techniques in gastroenterological endoscopy. All papers include a high quality video and all contributions are freely accessible online.

This section has its own submission website at
https://mc.manuscriptcentral.com/e-videos