Zeitschrift für Orthomolekulare Medizin 2017; 15(01): 24-29
DOI: 10.1055/s-0043-105765
Wissen
Karl F. Haug Verlag in Georg Thieme Verlag KG Stuttgart – New York

Kynurenin und Indolamin-2,3-Dioxygenase (IDO) – immunologische Marker und Akteure

Berthold Hocher
1   Institut für Ernährungswissenschaft, Universität Potsdam, Nuthetal; Institut für Laboratoriumsmedizin Berlin, IFLb, Berlin; Department of Basic Medicine, Jinan University, Guangzhou, China
,
Karl-Heinz Kellner
2   Neuroimmun GmbH, Karlsruhe
› Author Affiliations
Further Information

Publication History

Publication Date:
14 July 2017 (online)

Summary

Die für die Gesundheit essenzielle Immunbalance wird maßgeblich durch die Indolamin-2,3-Dioxygenase (IDO) gesteuert. Hohe Aktivität der IDO und damit einhergehende hohe Kynureninspiegel blockieren das Immunsystem und ziehen schlechte Prognosen bei Infektionen, Krebs u. a. Erkrankungen nach sich. Die IDO-Aktivität kann durch Sport und Naturstoffe wie Kurkumin gesenkt werden.

 
  • Literatur

  • 1 Beadle GW. et al. Kynurenine as an intermediate in the formation of nicotinic acid from tryptophane by Neurospora. Proc Natl Acad Sci USA 1947; 33: 155-158
  • 2 Fujigaki S. et al. Lipopolysaccharide induction of indoleamine 2,3-dioxygenase is mediated dominantly by an IFN-gamma-independent mechanism. Eur J Immunol 2001; 31: 2313-2318
  • 3 Hassanain HH. et al. Differential regulation of human indoleamine 2,3-dioxygenase gene expression by interferons-gamma and -alpha. Analysis of the regulatory region of the gene and identification of an interferon-gamma-inducible DNA-binding factor. J Biol Chem 1993; 268: 5077-5084
  • 4 Taylor MW. et al. Relationship between interferon-gamma, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J 1991; 5: 2516-2522
  • 5 Babcock TA. et al. Transcriptional activation of indoleamine dioxygenase by interleukin 1 and tumor necrosis factor alpha in interferon-treated epithelial cells. Cytokine 2000; 12: 588-594
  • 6 Busbee et al. Use of natural AhR ligands as potential therapeutic modalities against inflammatory disorders. Nutr Rev 2013; 71(6): 353–369
  • 7 Orabona C, Pallotta M. Different Partners, Opposite Outcomes: A New Perspective of the Immunobiology of Indoleamine 2,3-Dioxygenase. Molecular Medicine 2012; 18: 834-842
  • 8 Munn DH. et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 2005; 22: 633-642
  • 9 Fallarino F. et al. Tryptophan catabolism generates autoimmune-preventive regulatory T cells. Transpl Immunol 2006; 17: 58-60
  • 10 Manlapat AK. et al. Cell-autonomous control of interferon type I expression by indoleamine 2,3-dioxygenase in regulatory CD19+ dendritic cells. Eur J Immunol 2007; 37: 1064-1071
  • 11 Puccetti P. et al. IDO and regulatory T cells: a role for reverse signalling and non-canonical NF-kappa B activation. Nat Rev Immunol 2007; 7: 817-823
  • 12 Jasperson LK. et al. Indoleamine 2,3-dioxygenase is a critical regulator of acute graft-versus-host disease lethality. Blood 2008; 111: 3257-3265
  • 13 Opitz CA. et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 2011; 478: 197-203
  • 14 Vogel CF. et al. Aryl hydrocarbon receptor signaling mediates expression of indoleamine 2,3-dioxygenase. Biochem Biophys Res Commun 2008; 375: 331-335
  • 15 Wirthgen E, Tuchscherer M, Otten W. et al. Activation of indoleamine 2,3-dioxygenase by LPS in a porcine model. Innate Immun 2014; 20 (01) 30-39
  • 16 Fuchs D. et al. Increased endogenous interferon-gamma and neopterin correlate with increased degradation of tryptophan in human immunodeficiency virus type 1 infection. Immunol Lett 1991; 28: 207-211
  • 17 Huengsberg M. et al. Serum kynurenine-to- tryptophan ratio increases with progressive disease in HIV-infected patients. Clin Chem 1998; 44: 858-62
  • 18 Werner ER. et al. Tryptophan degradation in patients infected by human immunodeficiency virus. Biol Chem Hoppe Seyler 1998; 369: 337-340
  • 19 Bipath P. et al. The kynurenine pathway activities in a sub-Saharan HIV/AIDS population. BMC Infectious Diseases 2015; 15 (01) 346
  • 20 Hong J. et al. Indoleamine 2,3-dioxygenase mediates inhibition of virus-specific CD8+ T cell proliferation by human mesenchymal stromal cells. Cytotherapy 2016; 18 (05) 621-629
  • 21 Suzuki Y. et al. Serum indoleamine 2,3-dioxygenase activity predicts prognosis of pulmonary tuberculosis. Clinical and Vaccine Immunology 2012; 19: 436-442
  • 22 Zuo H. et al. Plasma Biomarkers of Inflammation, the Kynurenine Pathway, and Risks of All-Cause, Cancer, and Cardiovascular Disease Mortality. American Journal of Epidemiology 2016; 183 (04) 249-258
  • 23 Cavia-Saiz M. et al. The role of plasma IDO activity as a diagnostic marker of patients with colorectal cancer. Molecular Biology Reports 2014; 41: 2275-2279
  • 24 Creelan BC. et al. Indoleamine 2,3-dioxygenase activity and clinical outcome following induction chemotherapy and concurrent chemoradiation in Stage III non-small cell lung cancer. Oncoimmunology 2013; 2 (03) e23428
  • 25 Chuang SC. et al. Circulating biomarkers of tryptophan and the kynurenine pathway and lung cancer risk. Cancer Epidemiology Biomarkers and Prevention 2014; 23: 461-468
  • 26 Folgiero V. et al. Indoleamine 2,3-dioxygenase 1 (IDO1) activity in leukemia blasts correlates with poor outcome in childhood acute myeloid leukemia. Oncotarget 2014; 5 (08) 2052-2064
  • 27 Choe J. et al. Indoleamine 2,3-dioxygenase ( IDO ) is frequently expressed in stromal cells of Hodgkin lymphoma and is associated with adverse clinical features: a retrospective cohort study. BMC Cancer 2014; 14 (01) 1-9
  • 28 Ferns DM. et al. Indoleamine-2,3-dioxygenase (IDO) metabolic activity is detrimental for cervical cancer patient survival. Oncoimmunology 2015; 4 (02) e981457
  • 29 Busbee et al. Use of natural AhR ligands as potential therapeutic modalities against inflammatory disorders. Nutr Rev 2013; 71 (06) 353-369
  • 30 Jeong YI. et al. Curcumin suppresses the induction of indoleamine 2,3-dioxygenase by blocking the Janus-activated kinase-protein kinase Cδ-STAT1 signaling pathway in interferon-γ-stimulated murine dendritic cells. Journal of Biological Chemistry 2009; 284 (06) 3700-3708
  • 31 Agudelo L Z. et al. Skeletal Muscle PGC-1α1 Modulates Kynurenine Metabolism and Mediates Resilience to Stress-Induced Depression. Cell 2014; 159 (01) 33-45
  • 32 Kurz K. et al. Fatigue in patients with lung cancer is related with accelerated tryptophan breakdown. PLoS ONE 2012; 7 (05) 1-9
  • 33 Schuler MK. et al. Impact of different exercise programs on severe fatigue in patients undergoing anticancer treatment – a randomized controlled trial. Journal of Pain and Symptom Management 2017; 53 (01) 57-66
  • 34 Reichetzeder et al. Pre-Interventional Kynurenine predicts Medium-Term Outcome after Contrast Media Exposure due to Coronary Angiography. Kidney Blood Pressure Res 2017; in press
  • 35 Hocher B, Adamski J. Metabolomics for clinical use and research in chronic kidney disease. Nat Rev Nephrol 2017; doi:10.1038/nrneph.2017.30 [Epub ahead of print]
  • 36 Wirthgen E, Hoeflich A. Endotoxin-induced tryptophan degradation along the kynurenine pathway: the role of indolamine 2,3-dioxygenase and aryl hydrocarbon receptor-mediated immunosuppressive effects in endotoxin tolerance and cancer and its implications for immunoparalysis. J Amino Acids 2015; 2015: 973548 doi: 10.1155/2015/973548