A “tandem approach” using sequential diagnostic (ultraslim) and therapeutic (standard size) direct freehand cholangioscopy to guide mechanical lithotripsy of a giant cystic duct remnant stone

This is the case of an 85-year-old woman with a distant history of cholecystectomy and complicated bile duct stone disease who had undergone several endoscopic retrograde cholangiography (ERC) procedures including standard-incision papillotomy elsewhere, and was now undergoing repeat ERC after resolution of an episode of acute cholangitis. Because of a complicated ERC anatomy, fluoroscopy provided limited information as to the location of the stone; basket capture was unsuccessful (Fig. 1).

With the patient still receiving piperacillin/tazobactam antibiotic treatment, we therefore proceeded to diagnostic direct cholangioscopy after freehand intubation using an ultraslim endoscope (GIF XP160; Olympus, Hamburg, Germany; outer diameter 5.9 mm, working channel 2.0 mm) [1], unequivocally identifying a cystic duct remnant stone, which was confirmed by cholangioscopy-directed injection of contrast media (Fig. 2).

Biliary insertion of a standard-sized upper gastrointestinal endoscope was precluded because of an insufficiently large papillotomy opening; therefore, endoscopic papillary large balloon dilation (EPLBD; CRE Balloon Dilation Catheter, Video 1: In light of equivocal findings on endoscopic retrograde cholangiography (ERC), we first performed diagnostic (ultraslim) direct cholangioscopy in freehand fashion to identify a giant stone in the markedly dilated cystic duct remnant, and subsequently used balloon dilation-assisted therapeutic (standard size) direct cholangioscopy with cholangioscopy-facilitated mechanical lithotripsy to complete stone clearance.}

▶ Fig. 1
Endoscopic retrograde cholangiography (ERC) image (mixed spontaneous air and dye cholangiogram) in the long axis provides limited information because of reduced maneuverability owing to a deep papilla location at the 3 o’clock position of a periampullary diverticulum. A large stone (25 mm in diameter) is seen, but its position is equivocal because of an overlying grossly dilated low-inserting cystic duct remnant.

▶ Fig. 2
Direct cholangioscopy was performed using an ultraslim upper gastrointestinal endoscope (note: neither CO2 insufflation nor saline instillation was needed, given the markedly dilated biliary system). a Direct cholangioscopy view showing a stone in the cystic duct remnant. b Fluoroscopic image after cholangioscopy-guided contrast injection confirming the stone to be located in the hugely dilated cystic duct remnant.

▶ Video 1: In light of equivocal findings on endoscopic retrograde cholangiography (ERC), we first performed diagnostic (ultraslim) direct cholangioscopy in freehand fashion to identify a giant stone in the markedly dilated cystic duct remnant, and subsequently used balloon dilation-assisted therapeutic (standard size) direct cholangioscopy with cholangioscopy-facilitated mechanical lithotripsy to complete stone clearance.
Boston Scientific, Ratingen, Germany) was performed (▶ Fig. 3a). EPLBD-assisted therapeutic (standard size) direct cholangioscopy was likewise performed freehand using a Fujinon EG590WR (Fujifilm, Düsseldorf, Germany; outer diameter 9.6 mm, working channel 2.8 mm) and was followed by cholangioscopy-guided stone capture using standard ERC equipment (▶ Fig. 3b). The metal sheath, which exceeded the diameter of the working channel, was introduced after the external plastic sheath had been cut and the scope had been removed; mechanical lithotripsy was then performed under fluoroscopic control (▶ Fig. 3c). Thereafter, the cystic duct remnant was completely cleared of mechanical lithotripsy fragments under direct cholangioscopic vision (▶ Fig. 3d).

In contrast to indirect visualization of the biliary system, for example by fluoroscopy-based ERC, direct cholangioscopy has advantages in both diagnosis and interventional potential in biliary diseases, and provides high quality imaging with a large field of view [2]. Here, we have presented a novel endoscopic technique for direct cholangioscopy-guided management of complex gall stone disease in a specifically committed endoscopy service. Cholangioscopy-guided mechanical lithotripsy of complex stone disease in the cystic duct stump is a novel innovative approach that integrates new and old endoscopic technology with widespread availability, contrary to catheter-based approaches, such as electrohydraulic or laser lithotripsy, with limited dissemination [3]. This novel, highly innovative concept of a “tandem approach,” sequentially using diagnostic (ultraslim) followed by therapeutic (standard size) direct cholangioscopy, may streamline complex biliary interventions in selected cases in the future.

Endoscopy_UCTN_Code_TTT_1AR_2AK
Competing interests
None

The Authors

Vincent Zimmer1,2, Frank Lammert2
1 Department of Medicine, Marienhausklinik
 St. Josef Kohlhof, Neunkirchen, Germany
2 Department of Medicine II, Saarland
 University Medical Center, Saarland
 University, Homburg, Germany

Corresponding author

Vincent Zimmer, MD
Department of Medicine, Marienhausklinik
St. Josef Kohlhof, 66539 Neunkirchen,
Germany
Fax: +49-6821-3632624
vincent.zimmer@gmx.de

References

 using standard endoscopes for diagnosis and therapy of biliary diseases. Am J Gastroenterol
 2012; 107: 1030 – 1035

 Endosc 2016; 84: 209 – 221

 fragmentation and extraction of impacted cystic duct stones. Endoscopy 2016; 48 (Suppl. 01): E88 – E89

Bibliography

DOI https://doi.org/10.1055/s-0043-106892
Endoscopy 2017; 49: E160–E162
© Georg Thieme Verlag KG
Stuttgart · New York
ISSN 0013-726X

ENDOSCOPY E-VIDEOS
https://eref.thieme.de/e-videos

Endoscopy E-Videos is a free access online section, reporting on interesting cases and new
techniques in gastroenterological endoscopy. All papers include a high quality video and all contributions are
freely accessible online.

This section has its own submission website at
https://mc.manuscriptcentral.com/e-videos