Aktuelle Ernährungsmedizin 2017; 42(03): 211-229
DOI: 10.1055/s-0043-108288
CME-Fortbildung
© Georg Thieme Verlag KG Stuttgart · New York

Ernährungstherapie bei Diabetes

Medical Nutritional Therapy of Diabetes
Anja Bosy-Westphal
1   Institut für Ernährungsmedizin, Universität Hohenheim, Stuttgart
,
Friederike Fieres-Keller
1   Institut für Ernährungsmedizin, Universität Hohenheim, Stuttgart
,
Manfred J. Müller
2   Institut für Humanernährung und Lebensmittelkunde, Christian-Albrechts-Universität, Kiel
› Author Affiliations

Subject Editor: Prof. Dr. med. Christian Löser, Kassel
Further Information

Publication History

Publication Date:
20 June 2017 (online)

Die Ernährungstherapie bei Patienten mit Typ-1- und Typ-2-Diabetes basiert auf einer gesunden Ernährung (ausgewogene, energiemodifizierte und ballaststoffreiche überwiegend pflanzliche Mischkost) und ergänzt diese entsprechend der Komorbiditäten der Erkrankung gezielt durch evidenzbasierte Erkenntnisse aus der Ernährungstherapie von Hypertonie, Dyslipidämie und Adipositas, um den bestmöglichen therapeutischen Nutzen zu erreichen.

Abstract

Nutritional therapy of patients with type 1 or type 2 diabetes is based on a healthy balanced diet that is complemented by evidenced based guidelines for nutritional counselling of comorbidities like obesity, hypertension and dyslipidemia. Dietary recommendations are further individualized based on medication (i. e. for prevention of hypoglycemia) and according to personal preferences (e. g. regarding macronutrient composition). Avoidance of long-term complications and improvement of prognosis are main objectives of nutritional therapy in the vulnerable group of patients with diabetes. In normal weight patients with type 1 diabetes, optimal glycemic control is the major target of counselling. In patients with type 2 diabetes, reduction of cardiovascular risk is also in the focus of therapy. In contrast to non-diabetic patients the treatment of dyslipidemia in type 2 diabetes not only requires lowering of LDL cholesterol by limitation of saturated fat intake but also needs a strategy for reduction of triglyceride levels. Both therapeutic aims can be best achieved by a high fiber low glycemic load diet with a high proportion of oleic acid.

Kernaussagen
  • Bei normalgewichtigen Patienten mit Typ-1-Diabetes steht die optimale Einstellung des Blutzuckerspiegels im Vordergrund der diätetischen Bemühungen.

  • Bei Typ-2-Diabetikern ist neben der Einstellung des Blutzuckers vor allem die diätetische Behandlung von Übergewicht und Adipositas sowie von Hypertonie und Fettstoffwechselstörungen zur Senkung des kardiovaskulären Risikos entscheidend. Im Gegensatz zu Nichtdiabetikern ist hierfür nicht nur eine Senkung des LDL-Cholesterins, sondern auch die Reduktion des Triglyzeridspiegels wichtig.

  • Die Verbesserung der Glykämie und der Blutfette wird am besten mit einer kohlenhydratmodifizierten Diät (ballaststoffreich mit niedriger glykämischer Last) mit einem hohen Anteil an einfach ungesättigten Fettsäuren erreicht.

 
  • Literatur

  • 1 King GL, Park K, Li Q. Selective insulin resistance and the development of cardiovascular diseases in diabetes: the 2015 Edvin Bierman Award Lecture. Diabetes 2016; 65: 1462-1471
  • 2 Franz MJ, Powers MA, Leontos C. et al. The evidence for medical nutrition therapy for type 1 and type 2 diabetes in adults. J Am Diet Assoc 2010; 110: 1852-1889
  • 3 Toeller M. Evidenz-basierte Ernährungsempfehlungen zur Behandlung und Prävention des Diabetes mellitus. Autorisierte deutsche Version nach: Diabetes and Nutrition Study Group (DNSG). Evidence-based nutritional approaches to the treatment and prevention of diabetes mellitus. Diabet Stoffw 2005; 14: 75-94
  • 4 Mann JI, De Leeuw I, Hermansen K. et al. Diabetes and Nutrition Study Group (DNSG) of the European Association. Evidence-based nutritional approaches to the treatment and prevention of diabetes mellitus. Nutr Metab Cardiovasc Dis 2004; 16: 373-394
  • 5 Evert AB, Boucher JL, Cypress M. et al. Nutrition therapy recommendations for the management of adults with diabetes. Diabetes Care 2014; 37 (Suppl. 01) S120-S143
  • 6 Thomas D, Elliott EJ. Low glycaemic index, or low glycaemic load, diets for diabetes mellitus. Cochrane Database Syst Rev 2009; 21: CD006296
  • 7 Feinman RD, Pogozelski WK, Astrup A. et al. Dietary carbohydrate restriction as the first approach in diabetes management: critical review and evidence base. Nutrition 2015; 31: 1-13
  • 8 Westerterp-Plantenga MS, Lemmens SG, Westerterp KR. Dietary protein - its role in satiety, energetics, weight loss and health. Br J Nutr 2012; 108 (Suppl. 02) S105-S112
  • 9 Feinman RD, Volek JS. Carbohydrate restriction as the default treatment for type 2 diabetes and metabolic syndrome. Scandinavian Cardiovascular Journal 2008; 42: 256-263
  • 10 Rüster C, Hasslacher C, Wolf G. Nephropathie bei Diabetes. Diabetologie 2015; 10 (Suppl. 02) S113-S118
  • 11 National Kidney Foundation. KDOQI Clinical Practice Guidelines and Clinical Practice Recommendations for Diabetes and Chronic Kidney Disease. Am J Kidney Dis 2007; 49 (Suppl. 02) S12-154
  • 12 Jenkins DJ, Wolever TM, Taylor RH. et al. Glycemic index of foods: a physiological basis for carbohydrate exchange. Am J Clin Nutr 1981; 34: 362-366
  • 13 Frost G, Dornhorst A. The relevance of the glycemic index to our understanding of dietary carbohydrates. Diabet Med 2000; 17: 336-345
  • 14 Levitan EB, Cook NR, Stampfer MJ. et al. Dietary glycemic index, dietary glycemic load, blood lipids, and C-reactive protein. Metabolism 2008; 57: 437-443
  • 15 Schwingshackl L, Hoffmann G. Long-term effects of low glycemic index/load vs. high glycemic index/load diets on parameters of obesity and obesity-associated risks: a systematic review and meta-analysis. Nutr Metab Cardiovasc Dis 2013; 23: 699-706
  • 16 Goff LM, Cowland DE, Hopper L. et al. Low glycaemic index diets and blood lipids: a systematic review and meta-analysis of randomized controlled trials. Nutr Metab & Cardiovasc Dis 2013; 23: 1-10
  • 17 Livesey G, Taylor R, Livesey H. et al. Is there a dose-response relation of dietary glycemic load to risk of type 2 diabetes? Meta-analysis of prospective cohort studies. Am J Clin Nutr 2013; 97: 584-596
  • 18 Qi L, Rimm E, Liu S. et al. Dietary Glycemic Index, Glycemic Load, Cereal Fiber, and Plasma Adiponectin Concentration in Diabetic Men. Diabetes Care 2005; 28: 1022-1028
  • 19 Burger KN, Beulens JW, van der Schouw YT. et al. Dietary fiber, carbohydrate quality and quantity, and mortality risk of individuals with diabetes mellitus. PLoS ONE 2012; 7: e43127
  • 20 He M, van Dam RM, Rimm E. et al. Whole-grain, cereal fiber, bran, and germ intake and the risks of all-cause and cardiovascular disease-specific mortality among women with type 2 diabetes mellitus. Circulation 2010; 121: 2162-2168
  • 21 Ang M, Linn T. Comparison of the effects of slowly and rapidly absorbed carbohydrates on postprandial glucose metabolism in type 2 diabetes mellitus patients: a randomized trial. Am J Clin Nutr 2014; 100: 1059-1068
  • 22 Wölnerhanssen BK, Cajacob L, Keller N. et al. Gut hormone secretion, gastric emptying, and glycemic responses to erythritol and xylitol in lean and obese subjects. Am J Physiol Endocrinol Metab 2016; 310: E1053-E1061
  • 23 Sievenpiper JL, Carleton AJ, Chatha S. et al. Heterogeneous effects of fructose on blood lipids in individuals with type 2 diabetes: systematic review and meta-analysis of experimental trials in humans. Diabetes Care 2009; 32: 1930-1937
  • 24 Livesey G, Taylor R. Fructose consumption and consequences for glycation, plasma triacylglycerol, and body weight: meta-analyses and meta-regression models of intervention studies. Am J Clin Nutr 2008; 88: 1419-1437
  • 25 Peterson C, Jovanovic-Peterson L. Percentage of carbohydrate and glycemic response to breakfast, lunch, and dinner in women with gestational diabetes mellitus. Diabetes 1991; 40 (Suppl. 02) 172-174
  • 26 Jovanovic L. Role of diet and insulin treatment of diabetes in pregnancy. Clin Obstet Gynecol 2000; 43: 46-55
  • 27 Jovanovic L. Achieving euglycaemia in women with gestational diabetes mellitus. Drugs 2004; 64: 1401-1417
  • 28 American Diabetes Association. Nutrition Recommendations and Interventions for Diabetes. A position statement of the ADA. Diabetes Care 2008; 31 (Suppl. 01) S61-S78
  • 29 Gutierrez Y, Reader D. American Dietetic Associaton Guide to Gestational Diabetes Mellitus. Chicago, IL: American Dietetic Association; 2005: 45-46
  • 30 Lau DC, Teoh H. Benefits of modest weight loss on the management of type 2 diabetes mellitus. Can J Diabetes 2013; 37: 128-134
  • 31 Laakso M. Cardiovascular disease in type 2 diabetes from population to man to mechanisms: the Kelly West Award Lecture 2008. Diabetes Care 2010; 33: 442-449
  • 32 Nordmann AJ, Nordmann A, Briel M. et al. Effects of low-carbohydrate vs low-fat diets on weight loss and cardiovascular risk factors: a meta-analysis of randomized controlled trials. Arch Intern Med 2006; 166: 285-293
  • 33 Franz MJ, Van Wormer JJ. et al. Weight-loss outcomes: a systematic review and meta-analysis of weight-loss clinical trials with a minimum 1-year follow-up. J Am Diet Assoc 2007; 107: 1755-1767
  • 34 Johansson K, Neovius M, Hemmingsson E. Effects of anti-obesity drugs, diet, and exercise on weight-loss maintenance after a very-low-calorie diet or low-calorie diet: a systematic review and meta-analysis of randomized controlled trial. Am J Clin Nutr 2014; 99: 14-23
  • 35 Feingold KR, Grunfeld C. Hrsg. Diabetes and Dyslipidemia. In: De Groot LJ, Beck-Peccoz P, Chrousos G, Dungan K, Grossman A, Hershman JM, Koch C, McLachlan R, New M, Rebar R, Singer F, Vinik A, Weickert MO. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc; 2000–2015
  • 36 Modi KD, Chandwani R, Ahmed I. et al. Discordance between lipid markers used for predicting cardiovascular risk in patients with type 2 diabetes. Diabetes Metab Syndr 2016; 10 (Suppl. 01) S99-S102
  • 37 Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) Study Research Group. Intensive Diabetes Treatment and Cardiovascular Outcomes in Type 1 Diabetes: The DCCT/EDIC Study 30-Year Follow-up. Diabetes Care 2016; 39: 686-693
  • 38 Ajala O, English P, Pinkney J. Systematic review and meta-analysis of different dietary approaches to the management of type 2 diabetes. Am J Clin Nutr 2013; 97: 505-516
  • 39 Landsberg L, Molitch M. Diabetes and hypertension: pathogenesis, prevention and treatment. Clin Exp Hypersens 2004; 26: 621-628
  • 40 Mente A, O’Donnell M, Rangarajan S. et al. PURE, EPIDREAM and ONTARGET/TRANSCEND Investigators. Associations of urinary sodium excretion with cardiovascular events in individuals with and without hypertension: a pooled analysis of data from four studies. Lancet 2016; pii: S0140-6736(16)30467-6; DOI: 10.1016/S0140-6736(16)30467-6. [Epub ahead of print]
  • 41 Blumenthal JA, Babyak MA, Hinderliter A. et al. Effects of the DASH Diet Alone and in Combination With Exercise and Weight Loss on Blood Pressure and Cardiovascular Biomarkers in Men and Women With High Blood Pressure: The ENCORE Study. Arch Intern Med 2010; 170: 126-135
  • 42 Joint National Committee on Prevention, Evaluation and Treatment of High Blood Pressure. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Bethesda, MD: US Dept of Health and Human Services; 2004. NIH publication 04-5230
  • 43 Tangney CC. DASH and Mediterranean-type Dietary Patterns to Maintain Cognitive Health. Curr Nutr Rep 2014; 3: 51-61
  • 44 Leuenberger V, Gache P, Sutter K. et al. High blood pressure and alcohol consumption. Rev Med Suisse 2006; 2: 2041-2042
  • 45 Burton JH, Johnson M, Johnson J. et al. Addition of a Gastrointestinal Microbiome Modulator to Metformin Improves Metformin Tolerance and Fasting Glucose Levels. J Diabetes Sci Technol 2015; 9: 808-814
  • 46 Zeyfang A, Bahrmann A, Wernecke J. Diabetes mellitus im Alter. Diabetologie 2015; 10: S192-S198
  • 47 Zeevi D, Korem T, Zmora N. et al. Personalized Nutrition by Prediction of Glycemic Responses. Cell 2015; 163: 1079-1094
  • 48 Wichmann A, Allahyar A, Greiner TU. et al. Microbial modulation of energy availability in the colon regulates intestinal transit. Cell Host Microbe 2013; 14: 582-590
  • 49 Suez J, Korem T, Zeevi D. et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 2014; 514: 181-186
  • 50 Rebello CJ, Burton J, Heiman M. et al. Gastrointestinal microbiome modulator improves glucose tolerance in overweight and obese subjects: A randomized controlled pilot trial. J Diabetes Complications 2015; 29: 1272-1276
  • 51 Forslund K, Hildebrand F, Nielsen T. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 2015; 528: 262-266