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ABSTRACT

Introduction Studies of triple-negative breast cancer have

recently been extending the inclusion criteria and incorporat-

ing additional molecular markers into the selection criteria,

opening up scope for targeted therapies. The screening

phases required for studies of this type are often prolonged,

since the process of determining the molecular subtype and

carrying out additional biomarker assessment is time-con-

suming. Parameters such as germline genotypes capable of

predicting the molecular subtype before it becomes available

from pathology might be helpful for treatment planning and

optimizing the timing and cost of screening phases. This ap-

pears to be feasible, as rapid and low-cost genotyping meth-

ods are becoming increasingly available. The aim of this study

was to identify single nucleotide polymorphisms (SNPs) for

breast cancer risk capable of predicting triple negativity, in ad-

dition to clinical predictors, in breast cancer patients.

Methods This cross-sectional observational study included

1271 women with invasive breast cancer who were treated at

a university hospital. A total of 76 validated breast cancer risk

SNPs were successfully genotyped. Univariate associations be-

tween each SNP and triple negativity were explored using lo-

gistic regression analyses. Several variable selection and re-

gression techniques were applied to identify a set of SNPs that

together improve the prediction of triple negativity in addi-

* Shared last authorship.
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tion to the clinical predictors of age at diagnosis and body

mass index (BMI). The most accurate prediction method was

determined by cross-validation.

Results The SNP rs10069690 (TERT, CLPTM1L) was the only

significant SNP (corrected p = 0.02) after correction of p val-

ues for multiple testing in the univariate analyses. This SNP

and three additional SNPs from the genes RAD51B, CCND1,

and FGFR2 were selected for prediction of triple negativity.

The addition of these SNPs to clinical predictors increased

the cross-validated area under the curve (AUC) from 0.618 to

0.625. Age at diagnosis was the strongest predictor, stronger

than any genetic characteristics.

Conclusion Prediction of triple-negative breast cancer can be

improved if SNPs associated with breast cancer risk are added

to a prediction rule based on age at diagnosis and BMI. This

finding could be used for prescreening purposes in complex

molecular therapy studies for triple-negative breast cancer.

ZUSAMMENFASSUNG

Einleitung Studien bei triple-negativem Brustkrebs haben die

Einschlusskriterien durch die Aufnahme zusätzlicher moleku-

larer Marker erweitert. Im Rahmen des Screenings für diese

Therapiestudien wird sowohl für die Bestimmung des moleku-

laren Subtyps als als auch für zusätzliche Biomarker-Unter-

suchungen ein längerer Zeitraum beansprucht, was die Be-

handlung verzögert. Keimbahn-Genotypen könnten bei der

Vorhersage des molekularen Subtyps helfen, zumal schnelle

und günstige Genotypisierungsmethoden zunehmend zur

Verfügung stehen. Ziel dieser Studie war es deswegen, zu prü-

fen, ob Einzelnukleotid-Polymorphismen (SNPs) der Keim-

bahn dabei helfen können, Brustkrebspatientinnen mit triple-

negativem Mammakarzinom zu identifizieren.

Methoden In dieser Querschnittsstudie wurden 1271 Patien-

tinnen mit invasivem Mammakarzinom eingeschlossen. Ins-

gesamt wurden 76 validierte Brustkrebsrisiko-SNPs erfolg-

reich genotypisiert. Univariate Assoziationen zwischen jedem

SNP und Triple-Negativität wurden mittels logistischer Re-

gression geprüft. Verschiedene Variablenselektions- und Re-

gressionsmethoden wurden angewandt, um eine Gruppe

von SNPs zu identifizieren, die zusammen mit den klinischen

Prädiktoren Alter bei Diagnose und BMI die Prädiktion der Tri-

ple-Negativität verbessern. Mittels Kreuzvalidierung wurde

die Methode mit der höchsten Genauigkeit bestimmt.

Ergebnisse Der SNP rs10069690 (TERT, CLPTM1L) war der

einzige einzelne SNP, der nach p-Wert-Korrektur für multiples

Testen signifikant mit Triple-Negativität assoziiert war

(p = 0,02). Dieser SNP und 3 weitere in den Genen RAD51B,

CCND1 und FGFR2 wurden ausgewählt, um gemeinsam in

einem Prädiktionsmodell Triple-Negativität vorherzusagen.

Die Hinzunahme dieser 4 SNPs erhöhte die kreuzvalidierte

AUC von 0,618 auf 0,625. Alter bei Diagnose war bei Weitem

der stärkste Prädiktor.

Schlussfolgerung Die Vorhersage von triple-negativem

Mammakarzinom kann verbessert werden, wenn sie nicht

nur auf den klinischen Prädiktoren Alter bei Diagnose und

BMI basiert, sondern auch auf Brustkrebsrisiko-SNPs. Das Prä-

diktionsmodell könnte bei der Rekrutierung von Patientinnen

für aufwendige molekulare Therapiestudien eingesetzt wer-

den.

GebFra Science |Original Article
Introduction
Knowledge about targeted therapies for breast cancer has im-
proved immensely over the last two decades. These therapies
have mainly been developed for – although they are not restricted
to – intrinsic molecular subtypes: triple-negative breast cancer
(TNBC), hormone receptor-positive breast cancer, and HER2-pos-
itive breast cancer.

As TNBC lacks hormone receptors and HER2 receptors, treat-
ment for triple-negative breast cancer is primarily restricted to
conventional chemotherapy. At the molecular level, however,
TNBC is a heterogeneous disease that has different histological
and molecular features. Recently, studies of TNBC have been ex-
tending the inclusion criteria and now include additional molecu-
lar markers in the selection criteria, opening up scope for targeted
therapies in this subtype of breast cancer.

One example is a study of the targeted antibody–drug conju-
gate glembatumumab vedotin [1]. The study includes not only a
requirement for the tumor to be triple-negative, but also for it to
show overexpression of glycoprotein nonmetastatic melanoma
protein B (gpNMB). Other examples are poly-(ADP-ribose) poly-
merase (PARP) inhibitor studies in patients with BRCA1/2 muta-
tions, based on a requirement for the tumor to be triple-negative
668 H
for testing of a BRCA1/2mutation [2,3]. The requirement for triple
negativity was later changed to HER2 negativity.

The screening phases for studies of this type are often ex-
tended, since the process of determining the molecular subtype
and carrying out additional biomarker assessment is time-con-
suming. This can often be a challenge to the patience of both pa-
tients and physicians. Parameters capable of predicting the mo-
lecular subtype before it becomes available via pathology might
be helpful for treatment planning and for optimizing the timing
and cost of screening phases for clinical trials. Biomarker assess-
ment could be carried out at an early stage in the work-up for pa-
tients with an increased likelihood of the specific molecular sub-
type.

Clinical and epidemiological risk factors, such as reproductive
factors and body mass index (BMI), are associated with the molec-
ular subtype of the tumor. They appear to have an effect on the
risk of developing hormone receptor-positive tumors [4–6]. In a
case–case analysis, our group previously reported that age and
BMI are the most important parameters associated with molecu-
lar subtypes [7]. High mammographic density was also associated
with hormone receptor-negative tumors [8, 9].

Since rapid and low-cost genotyping is becoming increasingly
widely available [10], single nucleotide polymorphisms (SNPs)
might be useful as predictors for molecular subtypes. Genetic fac-
äberle L et al. Predicting Triple-Negative Breast… Geburtsh Frauenheilk 2017; 77: 667–678



tors have been shown to increase the risk for specific breast can-
cer subtypes. For example, it is known that patients with BRCA1
mutations are mainly diagnosed with triple-negative breast can-
cer, and mutation rates in this population are over 10% [11]. In ad-
dition, approximately 100 validated SNPs for breast cancer risk are
known [12–14]. Some of these SNPs have been specifically linked
to a risk for hormone receptor-positive, hormone receptor-nega-
tive, or triple-negative breast cancer [15–21].

It was hypothesized that a combination of multiple breast can-
cer risk SNPs in addition to clinical predictors of molecular sub-
types may improve the prediction of molecular subtypes. Specifi-
cally, predicting TNBC – a breast cancer subtype in which the pa-
tients affected have many unmet medical needs – would be help-
ful. The aim of this study was therefore to identify breast cancer
risk SNPs capable of predicting TNBC in addition to clinical predic-
tors in women with invasive breast cancer. The prediction per-
formance of various methods of selecting SNPs was compared.
Methods

Patients

The patients selected for this retrospectively designed cross-sec-
tional observational study are included in the Bavarian Breast Can-
cer Cases and Cohorts (BBCC) study. The BBCC has been ongoing
since 2002 and includes consecutively recruited patients with in-
vasive breast cancer at the University Breast Center for Franconia.
The study was designed to identify and validate genetic and non-
genetic risk factors, and it has been involved in several validation
studies for SNPs [13,14,19–33]. For the present study, all women
who were recruited into the BBCC from 2002 to 2010 were se-
lected. Among them, patients were excluded for the following
reasons: no participation in any genetic BBCC research projects;
insufficient remaining DNA available due to participation in pre-
vious research projects; and no data on hormone receptor status
or HER2 status available from the central pathology department
at the breast cancer center. After SNPs had been selected for anal-
ysis (see below), patients with incomplete genetic information
were also excluded. All of the patients provided written informed
consent, and the Ethics Committee of the Medical Faculty at Frie-
drich Alexander University of Erlangen–Nuremberg approved the
study.

Data collection

All treatment-related patient data and tumor characteristics were
documented as part of the certification processes required by the
German Cancer Society (Deutsche Krebsgesellschaft) and by the
German Society for Breast Diseases (Deutsche Gesellschaft für Se-
nologie) [34]. The data are recorded prospectively in a database
and audited annually as part of the breast cancer center certifica-
tion process. Epidemiological data and risk factors for breast can-
cer were obtained using a structured questionnaire, which was
completed by the patients and reviewed together with trained
study personnel and supplemented if necessary.
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SNP selection

A total of 102 SNPs were selected for genotyping. Of these, 98 are
validated breast cancer risk SNPs. Most of these breast cancer risk
SNPs have been confirmed in large international validation stud-
ies, mainly by the Breast Cancer Association Consortium (BCAC).
The BCAC initially published a validation of a few SNPs [35] and
then, after increasing the sample size and analyzing more SNPs,
published a series of papers as a result of the Collaborative Onco-
logical Gene–environment Study (COGS; www.cogseu.org and
www.nature.com/icogs/) [13,14]. Four SNPs that were shown to
have an influence on the prognosis in breast cancer patients were
also selected [36–39]. A complete list of the SNPs, including refer-
ences, is provided in Supplementary Table S1 [13,14,18–20,25,
29,30,32,33, 35,37–39,67,79–89].

DNA extraction, genotyping, and quality control

Whole-blood samples were collected in citrate-phosphate-
dextrose-adenine (CPDA) tubes (Sarstedt AG, Nümbrecht, Ger-
many) from patients who had consented to participate in the bio-
marker substudy. Germline DNA was extracted using the auto-
mated magnetic bead-based chemagic MSM I technique (Perkin-
Elmer chemagen, Baesweiler, Germany) in accordance with the
manufacturerʼs instructions. Genotyping was done at the Dr. Mar-
garete Fischer-Bosch Institute of Clinical Pharmacology, using
MassARRAY iPLEX Gold (Sequenom, San Diego, California, USA).
SNPs were excluded if MALDI spectra were unreliable, based on
raw genotype data. Exact tests for Hardy–Weinberg equilibrium
(HWE) were performed and SNPs with an unexpectedly small p
value, assessed using a quantile–quantile plot, were also ex-
cluded.

Pathology assessment

All of the histopathological information used in the analysis was
directly documented from the original pathology reports, which
were reviewed by two investigators. Estrogen receptor status,
progesterone receptor status, and HER2 status were assessed as
follows. Monoclonal mouse antibodies against estrogen recep-
tor-alpha (clone 1D5; 1 :200 dilution, DAKO, Denmark) and
monoclonal mouse antibody against the progesterone receptor
(clone pgR636, 1 :200 dilution, DAKO, Denmark) were used to
stain the pretreatment core biopsies. The percentage of positively
stained cells was included in the pathology reports. The tumors
were considered to be positive for the estrogen and progesterone
receptors if 10% or more of the cells showed positive staining, in
accordance with recommendations applying at the time when the
study was conducted [40–43]. A polyclonal antibody against
HER2 (1 :200 dilution, DAKO, Denmark) was used, and HER2
status was stated in the pathology reports as negative, 0, 1+, 2+,
or 3+ in accordance with the guidelines published by Sauter et al.
[44]. Tumors with a score of 0 or 1+ were regarded as HER2-neg-
ative, and those with a score of 3+ were regarded as HER2-posi-
tive. Tumors with 2+ staining were tested for gene copy numbers
of HER2 by chromogene in-situ hybridization. Using a kit with two
probes of different colors (ZytoDot, 2C SPEC HER2/CEN17, Zyto-
Vision Ltd., Bremerhaven, Germany), the gene copy numbers of
HER2 and centromeres of the corresponding chromosome 17
were retrieved. A HER2/CEN17 ratio of ≥ 2.2 was considered as
669
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amplification of HER2. Scoring was carried out in a standardized
way by a group of dedicated pathologists in routine surgical pa-
thology. A tumor was regarded as being triple-negative if the es-
trogen receptor (ER) status was negative, progesterone receptor
(PR) status was negative, and HER2 status was negative. In the
present study, “triple-negative” refers to one subgroup of molec-
ular subtypes of breast cancer, although comprehensive gene ex-
pression profiling was not performed.

Statistical methods

To investigate the predictive value of each single SNP relative to
the occurrence of a TNBC in addition to clinical predictors, a multi-
ple logistic regression model was fitted for each SNP with TNBC
status (yes versus no) as the outcome, and with the specific SNP
(ordinal; 0, 1, or 2 minor alleles) and the clinical predictors age at
diagnosis (continuous) and BMI (continuous) as predictors [7]. Pa-
tients with missing genetic data or missing outcome data were ex-
cluded. Missing clinical predictors were imputed, as done in [45].
Continuous predictors were used as natural cubic spline functions
to describe nonlinear effects [46].The degrees of freedom (be-
tween 1 and 3) of each predictor were calculated as done in [45].
The odds ratio (OR) per minor allele with confidence interval was
calculated using the logistic regression model. For each SNP, a
likelihood ratio test comparing the clinical-genetic logistic regres-
sion model with a clinical logistic regression model containing on-
ly the clinical predictors was performed. The p values (one per
SNP) were corrected for multiple testing using the Bonferroni–
Holm method.

The primary study aim was to identify a set of SNPs that to-
gether would improve the prediction of TNBCs in addition to clin-
ical predictors (age, BMI). Identifying relevant SNPs among the
relatively large number of candidate SNPs was a challenging pro-
cess, which can be summed up as follows. The complete dataset
was randomly divided into two parts: one training set with about
two-thirds of the patients, and one validation set with about one-
third of the patients. Various SNP selection methods and regres-
sion techniques, respectively, were applied to the training data to
obtain regression models with selected SNPs and clinical predic-
tors. The models were compared among themselves with regard
to their prediction errors on validation data.

All but one of the regression techniques considered comprise a
bundle of candidate models characterized by a tuning parameter
λ. The optimal λ has to be determined before a specific prediction
model representing the regression technique can be fitted to pre-
dict TNBC. After the degrees of freedom of the continuous clinical
predictors had been determined again by using training data, the
following regression techniques were applied to the training data.

Univariate selection. For each SNP, a logistic regression model
with the clinical predictors and the specific SNP was compared
with a logistic regression model with clinical predictors alone, us-
ing a likelihood ratio test. The SNPs were ordered according to in-
creasing p values for these likelihood ratio tests. The λ top-ranked
SNPs were selected and included in a logistic regression model
that also contained the clinical predictors. Here λ, ranging from 0
to 30, is a tuning parameter representing the number of selected
SNPs [47]. When a specific model was applied to the validation
data afterwards, generalized shrinkage after coefficient estima-
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tion toward the clinical regression model was used to improve
predictions [48].The shrinkage factor was obtained from the max-
imal genetic model with 30 SNPs.

Stepwise selection as described in [49]. All of the SNPs were
ordered as above. The top 30 ranked SNPs were preselected, in
order to keep the number of SNPs to be analyzed easy to handle.
One hundred bootstrap samples of the same size as the original
dataset were drawn with replacement. On each bootstrap sample,
a logistic regression model with the clinical predictors and the
preselected SNPs was set up. A backward stepwise variable selec-
tion procedure that kept all the clinical predictors was carried out
to obtain the best model in accordance with the Akaike informa-
tion criterion. The retained variables from each bootstrap sample
were recorded, and a final variable selection was made. The most
frequently selected SNPs (> 70%) and – to address correlation
among SNPs – representatives of highly frequent SNP pairs
(> 90%) were chosen. Again, generalized shrinkage was incorpo-
rated when the final model was applied.

The least absolute shrinkage operator (lasso) is a regression tech-
nique in which the regression coefficients are shrunk towards zero
during estimation [50]. The amount of shrinkage is controlled by a
tuning parameter λ. Depending on the value of λ, a number of co-
efficients reach exactly zero, which means that lasso also leads to
variable selection. In the present study, a regression model was
set up with the clinical predictors and all SNPs. The coefficients of
the SNPs, but not the coefficients of the clinical predictors, were
shrunk by variation of λ. A regression model with maximal shrink-
age that has all coefficients of the SNPs equal to 0 corresponds to
the clinical logistic regression model. In contrast to the usual re-
gression models, lasso can deal with large numbers of predictors.

Component-wise gradient boosting fits a regression model iter-
atively [51,52]. It starts with an empty model without any predic-
tors. In each iteration, the best-performing predictor is added to
the model with a small step size, or its coefficient is updated if it
was included before. More relevant predictors are included earlier
than less relevant ones. The number of boosting iterations, λ, is a
tuning parameter that controls both the variable selection proper-
ties of the algorithm and the implied shrinkage of the coefficients.
The incorporation of clinical predictors is less straightforward than
for lasso. A logistic regression model with clinical predictors is fit-
ted. This fit is taken as the offset for the boosting procedure de-
scribed above with SNPs as predictors [53].

The optimal λ for each method was found by 10-fold cross-val-
idation on the training dataset. For a given value of λ, the predic-
tion model was estimated on nine folds and then applied on the
tenth fold. The mean squared error (MSE) was taken as the evalu-
ation measure. The MSE is a summary measure of the differences
between the observed TNBC status (either 0 for “no” or 1 for
“yes”) of patients in the tenth fold, which was not used for model
building, and the expected probability obtained from the model
(between 0 and 1) for these patients having a TNBC. This proce-
dure was done 10 times, leaving one fold out at a time, and the
average MSE was calculated. The λ value with the smallest average
MSE was regarded as the optimal λ. The whole training set was fi-
nally used to fit a regression model with the optimal λ.

The procedures described above resulted in four clinical-ge-
netic regression models for predicting TNBC. In addition, two
äberle L et al. Predicting Triple-Negative Breast… Geburtsh Frauenheilk 2017; 77: 667–678



▶ Table 1 Patient characteristics.

Characteristic Mean or
count

SD or %

Age at diagnosis Years 57.2 11.7

BMI kg/m2 26.2 4.8

ER ▪ Negative 231 22.5

▪ Positive 796 77.5

PR ▪ Negative 288 28.0

▪ Positive 739 72.0

HER2 ▪ Negative 877 85.4

▪ Positive 150 14.6

Triple-negative ▪ No 893 87.0

▪ Yes 134 13.0

BMI, body mass index; ER, estrogen receptor; PR, progesterone
receptor
benchmark models – a logistic null model without any predictors
and a clinical logistic regression model with clinical predictors but
without any SNPs – were fitted on the training data. A useful clin-
ical model should perform better than the null model, whereas a
useful prediction model with clinical and genetic predictors
should perform better than the clinical model without further
predictors. These six models were evaluated on the validation da-
taset to measure their performance in new patients. Again, the
MSE was taken as a performance criterion.

To obtain further insight into the accuracy of the prediction,
the performance improvement of the four clinical-genetic models
in comparison with the clinical model was assessed on validation
data using the continuous net reclassification improvement (NRI).
Roughly speaking, the continuous NRI is the proportion of pa-
tients with TNBC or without TNBC, respectively, who are correctly
given a higher or lower predicted probability of TNBC by the clin-
ical-genetic regression model than by the clinical model, cor-
rected by wrongly assigned lower or higher probabilities [54].

In clinical practice, a prediction model for TNBC might support
treatment decision-making based on a threshold for the pre-
dicted probability of TNBC that classifies a patient as a “high-risk”
patient or “low-risk” patient. The ability to distinguish between
patients with and without TNBC was measured on validation data
using the receiver operating characteristic (ROC) curve and the
area under the ROC curve (AUC), an estimation of the probability
that given two patients, one with TNBC and the other without
TNBC, the prediction model will assign TNBC status to both pa-
tients correctly.

To overcome the drawbacks of only splitting the data into
training and validation sets once, the dataset was divided several
times into training and validation sets and the procedure was re-
peated as described above each time [47,55]. More precisely, 3-
fold cross-validation with 100 repetitions was done. For each re-
gression technique for predicting TNBC, the average value of the
300 MSEs of the corresponding regression models was taken as a
final evaluation criterion, and the average AUC and average NRI
were used as further criteria. The regression technique with the
smallest average MSE is regarded as the best method (the “win-
ner” method) for predicting TNBC.

The best prediction method was applied to the whole dataset
to obtain the final prediction model for TNBC. This was done by
repeating all of the model-building steps, this time not on the
training data, but on the complete dataset. That is, cubic spline
functions and the tuning parameter λ were determined as de-
scribed above and a corresponding regression model was fitted
on the complete dataset. A TNBC prediction score on a scale from
0 to 100, representing the probability of a TNBC, was derived from
the final prediction model by taking the inverse logit of the linear
combination of predictor values and regression coefficients. The
performance of the final model on the complete dataset in terms
of discrimination and calibration was measured using the AUC and
the Hosmer–Lemeshow statistic (scatterplot and χ2 test) compar-
ing predicted and observed TNBC events, as done recently in [56].
A large p value indicates satisfactory calibration.

All of the tests were two-sided, and a p value < 0.05 was con-
sidered statistically significant. Calculations were carried out us-
Häberle L et al. Predicting Triple-Negative Breast… Geburtsh Frauenheilk 2017; 77: 667–678
ing the R system for statistical computing (version 3.0.1; R Core
Team, Vienna, Austria, 2013).
Results

Patients and SNPs

A total of 2234 patients were recruited into the BBCC during the
specified period. A subset of 1868 patients took part in genetic
BBCC research projects. Of these, sufficient DNA was available
from 1743 patients. A further 472 patients with incomplete hor-
mone receptor and HER2 status information were excluded, re-
sulting in 1271 remaining patients. Twenty-seven out of 102 SNPs
were excluded after genotype quality control: 24 SNPs because of
unreliable MALDI spectra and three SNPs because of departure
from HWE (Supplementary Table S1). Due to missing values, the
following SNPs were excluded: rs1550623 (17.0% missing values
out of 1271), rs3903072 (9.9%), rs2380205 (9.6%), rs17817449
(7.4%), rs2236007 (7.2%), rs3803662 (5.0%), rs9790517 (5.0%),
and rs2046210 (5.0%). All patients had age information, and
missing BMI values (4.2%) were imputed. The final sample size
was 1027 patients, after 244 patients with incomplete genetic in-
formation had been excluded. Patient characteristics are shown in
▶ Table 1.

Univariate SNP and TNBC association

The clinical predictors age at diagnosis and BMI, used as adjust-
ment variables, fitted best as cubic spline functions with 2 and 1
degrees of freedom, respectively – i.e., age was used nonlinearly
and BMI was used linearly. Twenty SNPs with the smallest p values
in the univariate analyses are shown in ▶ Table 2. rs10069690
(TERT, CLPTM1L) was the only significant SNP (corrected p = 0.02)
after correction of p values for multiple testing. The corrected p
values for rs2981579 (FGFR2), rs7726159 (TERT), rs2588809
(RAD51B), and rs78540526 (CCND1) were 0.18, 0.36, 0.81 and
0.93, respectively; the other corrected p values were 1.00.
671



▶ Table 2 Univariate associations with triple-negative breast cancer (TNBC) for the 20 SNPs with the lowest p values.

SNP Chromosome Nearest genes MAF OR (95% CI)1 p value2

rs10069690 5 TERT, CLPTM1L 0.249 1.66 (1.27, 2.18) < 0.001

rs2981579 10 FGFR2 0.484 0.66 (0.51, 0.87) < 0.01

rs7726159 5 TERT 0.358 1.46 (1.12, 1.91) < 0.01

rs2588809 14 RAD51B 0.174 0.62 (0.42, 0.92) 0.02

rs78540526 11 CCND1 0.104 0.55 (0.32, 0.92) 0.02

rs11820646 11 – 0.389 1.38 (1.06, 1.80) 0.02

rs2981582 10 FGFR2 0.451 0.73 (0.55, 0.95) 0.02

rs3760982 19 KCNN4, ZNF283 0.485 0.77 (0.59, 1.01) 0.06

rs2363956 19 MERIT40 0.488 0.78 (0.60, 1.01) 0.06

rs1436904 18 CHST9 0.383 1.27 (0.98, 1.65) 0.07

rs6001930 22 MKL1 0.127 0.68 (0.43, 1.06) 0.09

rs12422552 12 ATF7IP, GRIN2B 0.295 0.77 (0.57, 1.04) 0.09

rs8170 19 MERIT40 0.191 1.31 (0.97, 1.78) 0.08

rs941764 14 CCDC88C 0.354 0.79 (0.59, 1.04) 0.09

rs11075995 16 FTO 0.264 1.29 (0.96, 1.72) 0.09

rs12710696 2 – 0.357 1.26 (0.96, 1.66) 0.09

rs11365234 7 AKAP9 0.392 1.24 (0.96, 1.61) 0.10

rs2823093 21 NRIP1 0.275 1.26 (0.96, 1.67) 0.10

rs4666275 2 ALK 0.060 1.50 (0.92, 2.46) 0.11

rs75915166 11 CCND1 0.082 0.67 (0.40, 1.14) 0.14

SNP, single nucleotide polymorphism; MAF, minor allele frequency
1 Odds ratio (OR) per minor allele, adjusted for age and body mass index, with 95% confidence interval (CI) and corresponding p value,
obtained from themultiple logistic regression model.

2 Uncorrected p values. The corrected p values for the top five SNPs were 0.02, 0.18, 0.36, 0.81, and 0.93. All other corrected p values were 1.00.

▶ Table 3 Prediction of triple-negative tumor1.

Model MSE Reclassification (%) AUC Selected SNPs

NRI Correctly up Correctly down

Null2 0.1137 (0.0109) – – – 0.500 (0.000) –

Clinical3 0.1098 (0.0104) – – – 0.618 (0.036) –

Univariate selection4 0.1098 (0.0107) 9.0 (12.2) 29.9 (25.2) 35.3 (29.1) 0.620 (0.038) 2.2 (2.9)

Stepwise selection4 0.1108 (0.0108) 13.8 (13.9) 46.0 (7.5) 60.6 (5.4) 0.614 (0.037) 8.1 (2.5)

Lasso4 0.1096 (0.0103) 12.5 (16.7) 49.1 (19.9) 57.1 (16.9) 0.622 (0.039) 9.1 (7.5)

Boosting4 0.1095 (0.0103) 17.3 (13.8) 55.4 (9.4) 53.3 (8.5) 0.625 (0.037) 8.2 (7.2)

AUC, area under the curve; MSE, mean squared error; NRI, net reclassification improvement; SNP, single nucleotide polymorphism
1 Summary statistics (mean and standard deviation) for MSE, NRI, and AUC, obtained from (logistic) regression models as well as the number of selected
SNPs are shown. All measures were obtained by 3-fold cross-validation with 100 repetitions.

2 Logistic regression model without any predictors.
3 Logistic regression model with clinical predictors (age and body mass index), but without any genetic predictors.
4 Regression model with clinical predictors and selected SNPs.
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Clinical-genetic TNBC prediction

Boosting turned out to be the most accurate prediction method,
and had a slightly smaller cross-validated prediction error MSE
than the lasso (▶ Table 3). Lasso and boosting performed better
than the clinical prediction model without genetic predictors,
672 H
whereas univariate selection performed similarly and stepwise se-
lection performed less well. These results were confirmed by AUC
statistics: Boosting was also superior with regard to distinguishing
betweenTNBC patients and non-TNBC patients. Lasso and univari-
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▶ Table 4 The final clinical-genetic prediction model for triple-ne-
gative breast cancer1.

Predictor Unit Coefficient

Intercept 3.5589

Age at diagnosis Year − 0.1624

Year2 0.0009372

Year3 0.000001951

BMI Per kg/m2 0.005691

rs10069690 Minor allele 0.19926

rs2981579 Minor allele − 0.09108

rs2588809 Minor allele − 0.02625

rs78540526 Minor allele − 0.03166

1 For example, the predicted probability for a 50-year-old patient with
a bodymass index of 26 and 1, 2, 1, 0 minor alleles of rs10069690,
rs2981579, rs2588809, and rs78540526, respectively, is exp (z)/
(1+exp[z]) at z = 3.5589 + 50 × (− 0.1624) + 502 × 0.0009372 + 503 ×
0.000001951 + 26 × 0.005691 + 1 × 0.19926 + 2 × (− 0.09108) + 1 ×
(− 0.02625) + 0 × (− 0.03166) = − 1.8354. That is, 13.8%.
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▶ Fig. 1 The predicted probability for triple-negative breast cancer
(TNBC) as a continuous function of age at diagnosis. The curves
were generated using the boosting model fitted on the complete
dataset. The black curve predicts the TNBC risk of a genetically
“average” woman with a median body mass index. The blue and the
orange curves show the predicted risk for patients with genetically
maximally increased and maximally decreased risks.
ate selection performed better than the clinical model, and step-
wise selection less well.

Boosting correctly increased the predicted probabilities of
TNBC for the majority of patients with a TNBC (“correct reclassifi-
cation upwards” in ▶ Table 3) and correctly decreased the pre-
dicted probabilities of TNBC for the majority of patients without
TNBC (“correct reclassification downwards” in ▶ Table 3). Lasso
did these correct increases and decreases for about half of the
TNBC patients and the majority of the non-TNBC patients. Univari-
ate selection correctly increased and decreased prediction proba-
bilities only for a minority of patients. With regard to correct re-
classifications, stepwise selection performed much better than
univariate selection. In total, the reclassification improvement of
the boosting model was superior to all other methods (“NRI” in
▶ Table 3).

The average number of selected SNPs on the 300 training sam-
ples was similar at boosting, lasso, and stepwise selection and
smaller at univariate selection. The number of SNPs varied rela-
tively strongly at lasso and boosting and weakly at stepwise selec-
tion and univariate selection (▶ Table 3).

During cross-validation, univariate tests were performed on
each training set and SNPs were ordered according to their p val-
ues. The most frequent SNP on top was rs10069690, ranking first
158 times (52.7%). The next most frequent SNPs on top were
rs2981579 (17.7%), rs78540526 (5.7%), rs2588809 (4.3%), and
rs7726159 (4.3%). In total, 24 SNPs were ranked first at least
once.

A boosting prediction model, the “winner” in the method com-
parison, was fitted on the complete dataset. Four SNPs were se-
lected: rs10069690 (TERT, CLPTM1L), rs2981579 (FGFR2),
rs2588809 (RAD51B), and rs78540526 (CCND1). All of these be-
longed to the top five SNPs at the univariate analysis. Age was
the strongest predictor, stronger than any genetic predictors.
The predicted probability for TNBC as a continuous function of
age is shown in ▶ Fig. 1. The likelihood of TNBC decreases with in-
creasing age up to about 60 years and remains constantly low
thereafter. All regression coefficients are shown in ▶ Table 4. The
coefficients of the predictor age were approximated using a cubic
polynomial, as cubic spline functions are difficult to use. Apart
from age, positive coefficients are associated with an increased
likelihood of TNBC. An ideal “genetically high-risk patient” can
thus be defined as a patient with two minor rs10069690 alleles
and always two common alleles at the other SNPs, while an ideal
“genetically low-risk patient” is a patient with two common
rs10069690 alleles and minor alleles at the other SNPs. The foot-
note in ▶ Table 4 states how the predicted probability of TNBC
can be calculated using the predictor values given.

The boosting model was well calibrated. The difference be-
tween actual and predicted events was quite low (▶ Fig. 2;
p = 0.73, Hosmer–Lemeshow test). The apparent AUC – i.e., the
AUC on the complete dataset – was 0.668, which is 0.043 units
larger than the cross-validated AUC value. This indicates that the
prediction model was slightly overfitted. For comparison, the ap-
parent AUC of the clinical model was 0.632 – i.e., 0.014 units larg-
er than its cross-validated value.

To demonstrate a possible future application of the final pre-
diction model, various cut-off points for the TNBC risk between 0
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and 100% were defined – e.g., 12%. Patients were classified as
“low-risk” if the prediction model assigned a TNBC risk below
12%. Otherwise they were classified as “high-risk.” The sensitivity
(i.e., the proportion of patients classified as “high-risk” among
true TNBC patients) and the specificity (i.e., the proportion of pa-
tients classified as “low-risk” among true non-TNBC patients) are
presented in ▶ Table 5, and compared with the clinical model.
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▶ Fig. 2 The observed and predicted frequencies of triple-negative
breast cancer (TNBC). The patients were sorted according to the
predicted probability for TNBC using the boosting prediction model
and grouped into ten categories based on percentiles. The number
of actually observed TNBCs (“observed events”) in each category
and the sum of predicted probabilities for TNBC (“predicted
events”) in each category are shown. Points below the gray line in-
dicate when the model is overestimating the likelihood of TNBC;
points above the gray line indicate when the model is underesti-
mating the likelihood. A perfect prediction model would show all
of the points on the gray line.
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The sensitivities were almost equal for cut-off points up to 12%.
Thereafter, the sensitivities of the boosting model were larger.
For instance, if a physician decides to screen patients with a risk
of TNBC of more than 15% for biomarkers that are important for
TNBC patients, without yet knowing their receptor status, then
43% of all TNBCs will be detected with the boosting model, in
comparison with 38% with the clinical model. The rate of false-
▶ Table 5 Sensitivity and specificity for the clinical prediction model and c

Cut-off point for predicting
triple-negative tumor (%)2

Frequency above
cut-off point (%)3

Sensitivity

Clinical mod

10 56.3 0.68

12 39.0 0.53

15 23.8 0.38

20 13.0 0.26

25 7.3 0.17

1 All measurements were obtained by 3-fold cross-validation with 100 repetitio
2 Patients were classified into a „high-risk“ group if the prediction model assig
(between 0 and 1) is defined as the proportion of „high-risk“ patients among
„low-risk“ patients among non-TNBC patients.

3 The proportion of patients classified as „high-risk“ in the total study populatio
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positive classifications would be 24%, two percentage points
more than when using the clinical prediction model. The ROC
curves for all possible cut-off points are shown in ▶ Fig. 3.
Discussion
The study shows that prediction of TNBC can be improved if
breast cancer risk SNPs are added to a prediction rule based on
age at diagnosis and BMI. Age at diagnosis turned out to be the
strongest predictor, stronger than any genetic influencing factors.

The final prediction model included four SNPs from the genes
RAD51B, TERT, CCND1, and FGFR2. Only one of these was statisti-
cally significant in the univariate SNP and TNBC association tests,
but all of them belong to the top five SNPs with the lowest p val-
linical-genetic boosting prediction model1.

Specificity

el Clinical-genetic
model

Clinical model Clinical-genetic
model

0.69 0.47 0.44

0.57 0.65 0.61

0.43 0.78 0.76

0.29 0.89 0.87

0.20 0.95 0.93

ns.

ned a triple-negative tumor probability above the cut-off point. Sensitivity
TNBC patients. Specificity (between 0 and 1) is defined as the proportion of

n, using the clinical-genetic prediction model.
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ues. Although the selection procedure did not consider any exter-
nal biological information, there might be biological reasons why
these SNPs taken together improve prediction.

rs10069690 (TERT) has been described as being associated
with estrogen receptor-negative and triple-negative breast can-
cer, serous ovarian cancer, breast and ovarian cancer risk in BRCA1
mutation carriers, as well as prostate cancer – implying that there
are similar pathways of pathogenesis in these different types of
cancer [13,15,30,33,57]. Fine mapping analyses of this region
revealed a function for telomere stability [30,57]. rs2981579
(FGFR2) has been clearly described as an SNP that specifically in-
creases the risk for hormone receptor-positive breast cancer [21,
58,59]. Its role in hormone receptor signaling has been linked to
FOXA1.

rs2588809 (RAD51B) is associated with triple-negative breast
cancer [13,15]. RAD51B, RAD51C, and RAD51D are RAD51 pa-
ralogues that build complexes among one other [60,61] and have
a function in homologous recombination. Breast cancer in men
[62], prostate cancer risk [63], and an increased risk of breast
and ovarian cancer in BRCA1 mutation carriers [64] are associated
with SNPs in RAD51B. In vitro experiments have shown that a re-
duction in RAD51B by silencing RNA increases the chemosensitiv-
ity and reduces the efficacy of homologous recombination in
breast cancer cells, with differences depending on subtype [65].

rs78540526 (CCND1) is located in a gene region that maps to a
putative enhancer of CCDN1. It is clearly associated only with hor-
mone receptor-positive breast cancer risk [25,66,67] and is there-
fore a reasonable marker for predicting hormone-receptor nega-
tivity and triple negativity. Functionally different CCDN1 expres-
sion levels have been shown to be different with regard to haplo-
types in this enhancer region [25]. This is of special interest, as
CCND1 expression and/or amplification have been under discus-
sion as a biomarker for the efficacy of CDK4/6 inhibitors [68].

In genetic prediction studies, it can be expected that the rank-
ing of the SNPs will differ, and the set of SNPs selected for predic-
tion will also differ, if the experiment is repeated on a different
group of patients with the same clinical characteristics. This also
holds if analyses are performed on subsets of patients within one
study [69]. In the present study, for instance, the top-ranked SNP
in the complete dataset was not ranked top in about 50% of all
subsamples, and the sets of selected SNPs varied strongly. Corre-
lations among SNPs, and SNPs with weak individual associations
with the outcome but stronger power as a group, may encourage
fluctuation in SNP selection. To obtain stable, reliable results that
are independent of a randomly chosen patient subset, all deci-
sions (e.g., the choice of tuning parameter for model specification
and comparison of model performances) were based on repeated
sampling.

Double cross-validation was carried out, with an inner loop to
specify the prediction model and an outer loop to compute model
performance measures, in order to ensure that all model-building
steps were performed completely independently of the validation
step [55,70]. That is, all reported measures were based on data
that were not used for model building. Otherwise, the measures
would have been overoptimistic. Schild et al. [71] provide an ex-
ample of double (cross-)validation being applied in a gynecologi-
cal study.
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The SNP selection process was carried out following a prespec-
ified plan. Univariate selection is a simple method that does not
take correlations among SNPs into account. It is known to perform
less well in general than more sophisticated methods such as lasso
and boosting [47], a result that was confirmed in this study. Lasso
and boosting performed similarly, although the model fitting was
rather different. However, the two methods share the common
feature that variable selection is a continuous process that leads
to “weakly” selected SNPs in addition to strong predictors. The re-
sult in the present study showing that boosting had a slightly bet-
ter prediction accuracy is consistent with a recently published
methodological study comparing boosting and lasso on simulated
datasets [72]. Bootstrap-based stepwise selection, a method that
our group has previously applied successfully to nongenetic data
(e.g., [45,73,74]), performed less well than lasso and boosting.
This might be because the parameters for variable selection were
kept firm, in contrast to the varying tuning parameters of the oth-
er methods. Since repetitive stepwise selection is itself relatively
elaborate, it would have been computationally demanding if the
number of selection processes had been further increased.

The added value provided by breast cancer SNPs to a clinical
prediction model was assessed using the overall performance
measures MSE and AUC. The advantage of such overall measures
is that prediction models can easily be compared. The disadvan-
tage is that they may be insensitive to detecting improvements
in the model performance when new predictors are added to a
model that has already included important predictors [75,76].
For example, in [77], the addition of a significant biomarker score
to a set of standard risk factors increased the AUC only from 0.76
to 0.77, an increase that is similar to that in the present study. Be-
cause of this, different methods of quantifying the improvement
such as the NRI have been developed [78].

In the future, germline genetic testing of SNPs from blood
could be carried out in clinical routine work on the same day and
at reasonable cost [10], particularly if only a few SNPs are involved
that can therefore be genotyped using polymerase chain reaction.
This would mean that the data would be available long before the
processing of tissue, which has to be embedded, cut, and exam-
ined by a pathologist along with the relevant molecular tests. Us-
ing this genetic method of information screening for specific
TNBC studies with elaborate biomarker assessment could be initi-
ated at an early time point for patients with an increased likeli-
hood of TNBC, particularly when biomarker assessment for all pa-
tients would be too expensive and waiting for results to come
from pathology would delay biomarker assessment and the pa-
tientʼs entry into a study.

The present study also aimed to demonstrate ways of manag-
ing the abundance of data available in the era of “big data” and
easy access to a variety of data, in order to make it feasible to use
large data volumes for clinical purposes. It can be anticipated that
it will also become possible to add the analysis of other markers,
such as circulating tumor DNA, in order to increase the accuracy
of molecular subgroup prediction. However, that will be a task for
future research.

This study has some limitations. First of all, it needs to be borne
in mind that the study was conducted in a population consisting
only of breast cancer patients. It did not serve to identify SNPs ca-
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pable of predicting the risk for triple-negative breast cancer in
healthy women – e.g., using a case–control study design. As the
study was intended to differentiate between triple-negative pa-
tients and non–triple-negative ones, it might have been more
useful to examine SNPs differentiating between molecular sub-
types rather than SNPs for breast cancer risk. Another limitation
is the small sample size. With just over 1000 patients, the sample
size was rather low and the findings will require validation in other
independent populations.

In conclusion, the ability to predict triple-negative tumors can
be improved for breast cancer patients if breast cancer risk SNPs
are added to a prediction rule based on age at diagnosis and BMI.
This finding could be used for prescreening purposes in compli-
cated molecular therapy studies for triple-negative breast cancer.
The advanced statistical procedures used in this study follow a
prespecified, systematic plan and are described with sufficient
generality to be easily adaptable for other research purposes.
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