Aktuelle Neurologie 2018; 45(03): 200-211
DOI: 10.1055/s-0043-112741
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Therapie der immunvermittelten paraneoplastischen neurologischen Erkrankungen

Management of Immune-mediated Paraneoplastic Neurological Disorders
Ilya Ayzenberg
Ruhr-Universität Bochum, Klinik für Neurologie, St. Josef Hospital
,
Ralf Gold
Ruhr-Universität Bochum, Klinik für Neurologie, St. Josef Hospital
,
Ingo Kleiter
Ruhr-Universität Bochum, Klinik für Neurologie, St. Josef Hospital
› Author Affiliations
Further Information

Publication History

Publication Date:
24 October 2017 (online)

Zusammenfassung

Die paraneoplastischen neurologischen Erkrankungen sind insgesamt selten und zeichnen sich durch eine mannigfaltige klinische Präsentation aus. Sie können sowohl das zentrale und periphere Nervensystem als auch den neuromuskulären Übergang und die Muskulatur betreffen. In zweidrittel der Fälle ist der Tumor zum Zeitpunkt des Auftretens der neurologischen Symptome noch nicht bekannt. Für die Diagnosestellung sind eine Testung der antineuronalen Antikörper und eine gezielte Tumorsuche notwendig. Eine schnellstmögliche adäquate Tumortherapie in Kombination mit einer Immuntherapie sind die Grundpfeiler der Behandlung von paraneoplastischen Erkrankungen. Aufgrund des Fehlens von kontrollierten Studien basieren die Therapieempfehlungen auf Fallserien und Expertenmeinungen. Im Akutstadium werden meist eine Steroidstoßtherapie, intravenöse Immunglobuline oder die therapeutische Apherese angewendet. Angesichts des potenziell irreversiblen Schadens muss diese Therapie früh, ggf. bereits während der Tumordiagnostik, begonnen werden. Für die Langzeittherapie werden je nach Krankheitsbild unterschiedliche Immunsuppressiva empfohlen.

Neben der Tumorprognose hängt der Krankheitsverlauf weitgehend davon ab, ob die Antikörper gegen intrazelluläre Antigene oder gegen Oberflächenantigene gerichtet sind. Letztere Erkrankungen sprechen auf B-Zell gerichtete Therapien gut an und sind mit einer deutlich besseren Prognose assoziiert. Diese Übersichtsarbeit fasst die aktuellen Therapieempfehlungen zusammen und gibt einen Ausblick auf einige noch nicht validierte, aber perspektivisch interessante Ansätze.

Abstract

Paraneoplastic neurological disorders are rare and clinically heterogeneous diseases. They can affect both the central and peripheral nervous system as well as the neuromuscular junction and muscle. The neurological deficits develop in 2 /3 of cases prior to cancer diagnosis. The diagnostic approach includes screening for antineural antibodies and a search for the underlying tumor. A prompt tumor therapy in combination with immunotherapy is the cornerstone in the management of these diseases. Due to lack of clinical trials, treatment recommendations are based on case series and expert opinions. High-dose corticosteroids, intravenous immunoglobulins and apheresis therapies are often used in the acute stage of the disease. These therapies should be started as early as possible, e. g. during the tumor screening, in order to prevent irreversible damage. Long-term treatment is mostly immunosuppressive and depends on the specific paraneoplastic syndrome. Outcomes vary depending upon the prognosis of the underlying cancer and the nature of antineuronal antibodies. Antibodies directed against antigens on the neuronal cell surface are highly sensitive to B cell-directed therapies and mostly associated with a favorable outcome. A thorough review of published data on actual treatment recommendations is provided along with discussion of currently not validated, but potentially highly effective new therapies.

 
  • Literatur

  • 1 Giometto B, Grisold W, Vitaliani R. et al. Paraneoplastic neurologic syndrome in the PNS Euronetwork database: a European study from 20 centers. Arch Neurol 2010; 67: 330-335
  • 2 McKeon A. Paraneoplastic and other autoimmune disorders of the central nervous system. Neurohospitalist 2013; 3: 53-64
  • 3 Leypoldt F, Wandinger K-P. Paraneoplastic neurological syndromes. Clin Exp Immunol 2014; 175: 336-348
  • 4 Gozzard P, Maddison P. Which antibody and which cancer in which paraneoplastic syndromes?. Pract Neurol 2010; 10: 260-270
  • 5 Trebst C, Jarius S, Berthele A. et al. Update on the diagnosis and treatment of neuromyelitis optica: recommendations of the Neuromyelitis Optica Study Group (NEMOS). J Neurol 2014; 261: 1-16
  • 6 Melzer N, Ruck T, Fuhr P. et al. Clinical features, pathogenesis, and treatment of myasthenia gravis: a supplement to the Guidelines of the German Neurological Society. J Neurol 2016; 263: 1473-1494
  • 7 Pittock SJ, Kryzer TJ, Lennon VA. Paraneoplastic antibodies coexist and predict cancer, not neurological syndrome. Ann Neurol 2004; 56: 715-719
  • 8 Bauer J, Bien CG. Neuropathology of autoimmune encephalitides. Handb Clin Neurol 2016; 133: 107-120
  • 9 Horta ES, Lennon VA, Lachance DH. et al. Neural autoantibody clusters aid diagnosis of cancer. Clin Cancer Res 2014; 20: 3862-3869
  • 10 Darnell RB, Posner JB. Paraneoplastic syndromes affecting the nervous system. Semin Oncol 2006; 33: 270-298
  • 11 Titulaer MJ, Soffietti R, Dalmau J. et al. Screening for tumours in paraneoplastic syndromes: report of an EFNS Task Force. Eur J Neurol 2011; 18: 19-e3
  • 12 Hadjivassiliou M, Alder SJ, Van Beek EJR. et al. PET scan in clinically suspected paraneoplastic neurological syndromes: a 6-year prospective study in a regional neuroscience unit. Acta Neurol Scand 2009; 119: 186-193
  • 13 Graus F, Keime-Guibert F, Reñe R. et al. Anti-Hu-associated paraneoplastic encephalomyelitis: analysis of 200 patients. Brain J Neurol 2001; 124: 1138-1148
  • 14 Shams’ili S, Grefkens J, de Leeuw B. et al. Paraneoplastic cerebellar degeneration associated with antineuronal antibodies: analysis of 50 patients. Brain J Neurol 2003; 126: 1409-1418
  • 15 Candler PM, Hart PE, Barnett M. et al. A follow up study of patients with paraneoplastic neurological disease in the United Kingdom. J Neurol Neurosurg Psychiatry 2004; 75: 1411-1415
  • 16 Vernino S, O’Neill BP, Marks RS. et al. Immunomodulatory treatment trial for paraneoplastic neurological disorders. Neuro Oncol 2004; 6: 55-62
  • 17 Keime-Guibert F, Graus F, Fleury A. et al. Treatment of paraneoplastic neurological syndromes with antineuronal antibodies (Anti-Hu, anti-Yo) with a combination of immunoglobulins, cyclophosphamide, and methylprednisolone. J Neurol Neurosurg Psychiatry 2000; 68: 479-482
  • 18 Widdess-Walsh P, Tavee JO, Schuele S. et al. Response to intravenous immunoglobulin in anti-Yo associated paraneoplastic cerebellar degeneration: case report and review of the literature. J Neurooncol 2003; 63: 187-190
  • 19 Graus F, Vega F, Delattre JY. et al. Plasmapheresis and antineoplastic treatment in CNS paraneoplastic syndromes with antineuronal autoantibodies. Neurology 1992; 42: 536-540
  • 20 Uchuya M, Graus F, Vega F. et al. Intravenous immunoglobulin treatment in paraneoplastic neurological syndromes with antineuronal autoantibodies. J Neurol Neurosurg Psychiatry 1996; 60: 388-392
  • 21 Stark E, Wurster U, Patzold U. et al. Immunological and clinical response to immunosuppressive treatment in paraneoplastic cerebellar degeneration. Arch Neurol 1995; 52: 814-818
  • 22 Shams’ili S, de Beukelaar J, Gratama JW. et al. An uncontrolled trial of rituximab for antibody associated paraneoplastic neurological syndromes. J Neurol 2006; 253: 16-20
  • 23 Jarius S, Wildemann B. ‘Medusa-head ataxia’: the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 1: Anti-mGluR1, anti-Homer-3, anti-Sj/ITPR1 and anti-CARP VIII. J Neuroinflammation 2015; 12: 166
  • 24 Jones AL, Flanagan EP, Pittock SJ. et al. Responses to and outcomes of treatment of autoimmune cerebellar ataxia in adults. JAMA Neurol 2015; 72: 1304-1312
  • 25 Peterson K, Rosenblum MK, Kotanides H. et al. Paraneoplastic cerebellar degeneration. I. A clinical analysis of 55 anti-Yo antibody-positive patients. Neurology 1992; 42: 1931-1937
  • 26 Rojas I, Graus F, Keime-Guibert F. et al. Long-term clinical outcome of paraneoplastic cerebellar degeneration and anti-Yo antibodies. Neurology 2000; 55: 713-715
  • 27 Phuphanich S, Brock C. Neurologic improvement after high-dose intravenous immunoglobulin therapy in patients with paraneoplastic cerebellar degeneration associated with anti-Purkinje cell antibody. J Neurooncol 2007; 81: 67-69
  • 28 Briani C, Vitaliani R, Grisold W. et al. Spectrum of paraneoplastic disease associated with lymphoma. Neurology 2011; 76: 705-710
  • 29 Greenlee JE. Treatment of paraneoplastic cerebellar degeneration. Curr Treat Options Neurol 2013; 15: 185-200
  • 30 Ariño H, Höftberger R, Gresa-Arribas N. et al. Paraneoplastic neurological syndromes and glutamic acid decarboxylase antibodies. JAMA Neurol 2015; 72: 874-881
  • 31 Graus F, Lang B, Pozo-Rosich P. et al. P/Q type calcium-channel antibodies in paraneoplastic cerebellar degeneration with lung cancer. Neurology 2002; 59: 764-766
  • 32 Tremor. Leitlinie der Deutschen Gesellschaft für Neurologie. Im Internet: www.dgn.org [Stand: Sep. 2012]
  • 33 Höftberger R, Titulaer MJ, Sabater L. et al. Encephalitis and GABAB receptor antibodies: novel findings in a new case series of 20 patients. Neurology 2013; 81: 1500-1506
  • 34 Höftberger R, van Sonderen A, Leypoldt F. et al. Encephalitis and AMPA receptor antibodies: Novel findings in a case series of 22 patients. Neurology 2015; 84: 2403-2412
  • 35 Dalmau J, Graus F, Villarejo A. et al. Clinical analysis of anti-Ma2-associated encephalitis. Brain J Neurol 2004; 127: 1831-1844
  • 36 Granerod J, Ambrose HE, Davies NW. et al. Causes of encephalitis and differences in their clinical presentations in England: a multicentre, population-based prospective study. Lancet Infect Dis 2010; 10: 835-844
  • 37 Hughes EG, Peng X, Gleichman AJ. et al. Cellular and synaptic mechanisms of anti-NMDA receptor encephalitis. J Neurosci 2010; 30: 5866-5875
  • 38 Moscato EH, Peng X, Jain A. et al. Acute mechanisms underlying antibody effects in anti-N-methyl-D-aspartate receptor encephalitis. Ann Neurol 2014; 76: 108-119
  • 39 Dalmau J, Lancaster E, Martinez-Hernandez E. et al. Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis. Lancet Neurol 2011; 10: 63-74
  • 40 Finke C, Kopp UA, Prüss H. et al. Cognitive deficits following anti-NMDA receptor encephalitis. J Neurol Neurosurg Psychiatry 2012; 83: 195-198
  • 41 Titulaer MJ, McCracken L, Gabilondo I. et al. Late-onset anti-NMDA receptor encephalitis. Neurology 2013; 81: 1058-1063
  • 42 Dalmau J, Gleichman AJ, Hughes EG. et al. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol 2008; 7: 1091-1098
  • 43 Irani SR, Bera K, Waters P. et al. N-methyl-D-aspartate antibody encephalitis: temporal progression of clinical and paraclinical observations in a predominantly non-paraneoplastic disorder of both sexes. Brain 2010; 133: 1655-1667
  • 44 Titulaer MJ, McCracken L, Gabilondo I. et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol 2013; 12: 157-165
  • 45 Viaccoz A, Desestret V, Ducray F. et al. Clinical specificities of adult male patients with NMDA receptor antibodies encephalitis. Neurology 2014; 82: 556-563
  • 46 Pham HP, Daniel-Johnson JA, Stotler BA. et al. Therapeutic plasma exchange for the treatment of anti-NMDA receptor encephalitis. J Clin Apheresis 2011; 26: 320-325
  • 47 Heine J, Ly L-T, Lieker I. et al. Immunoadsorption or plasma exchange in the treatment of autoimmune encephalitis: a pilot study. J Neurol 2016; 263: 2395-2402
  • 48 Dogan Onugoren M, Golombeck KS, Bien C. et al. Immunoadsorption therapy in autoimmune encephalitides. Neurol Neuroimmunol Neuroinflammation 2016; 3: e207
  • 49 Gastaldi M, Thouin A, Vincent A. Antibody-mediated autoimmune encephalopathies and immunotherapies. Neurotherapeutics 2016; 13: 147-162
  • 50 Tatencloux S, Chretien P, Rogemond V. et al. Intrathecal treatment of anti-N-Methyl-D-aspartate receptor encephalitis in children. Dev Med Child Neurol 2015; 57: 95-99
  • 51 Behrendt V, Krogias C, Reinacher-Schick A. et al. Bortezomib treatment for patients with anti-N-methyl-d-aspartate receptor encephalitis. JAMA Neurol 2016; 73: 1251-1253
  • 52 Scheibe F, Prüss H, Mengel AM. et al. Bortezomib for treatment of therapy-refractory anti-NMDA receptor encephalitis. Neurology 2017; 88: 366-370
  • 53 Gresa-Arribas N, Titulaer MJ, Torrents A. et al. Antibody titres at diagnosis and during follow-up of anti-NMDA receptor encephalitis: a retrospective study. Lancet Neurol 2014; 13: 167-177
  • 54 Irani SR, Alexander S, Waters P. et al. Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan’s syndrome and acquired neuromyotonia. Brain J Neurol 2010; 133: 2734-2748
  • 55 Lai M, Huijbers MGM, Lancaster E. et al. Investigation of LGI1 as the antigen in limbic encephalitis previously attributed to potassium channels: a case series. Lancet Neurol 2010; 9: 776-785
  • 56 Lancaster E, Huijbers MGM, Bar V. et al. Investigations of caspr2, an autoantigen of encephalitis and neuromyotonia. Ann Neurol 2011; 69: 303-311
  • 57 Irani SR, Michell AW, Lang B. et al. Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis. Ann Neurol 2011; 69: 892-900
  • 58 van Sonderen A, Ariño H, Petit-Pedrol M. et al. The clinical spectrum of Caspr2 antibody-associated disease. Neurology 2016; 87: 521-528
  • 59 Lang B, Makuch M, Moloney T. et al. Intracellular and non-neuronal targets of voltage-gated potassium channel complex antibodies. J Neurol Neurosurg Psychiatry 2017; 88: 353-361
  • 60 van Sonderen A, Thijs RD, Coenders EC. et al. Anti-LGI1 encephalitis: Clinical syndrome and long-term follow-up. Neurology 2016; 87: 1449-1456
  • 61 Ohkawa T, Fukata Y, Yamasaki M. et al. Autoantibodies to epilepsy-related LGI1 in limbic encephalitis neutralize LGI1-ADAM22 interaction and reduce synaptic AMPA receptors. J Neurosci 2013; 33: 18161-18174
  • 62 Malter MP, Frisch C, Schoene-Bake JC. et al. Outcome of limbic encephalitis with VGKC-complex antibodies: relation to antigenic specificity. J Neurol 2014; 261: 1695-1705
  • 63 Thieben MJ, Lennon VA, Boeve BF. et al. Potentially reversible autoimmune limbic encephalitis with neuronal potassium channel antibody. Neurology 2004; 62: 1177-1182
  • 64 Shin Y-W, Lee S-T, Shin J-W. et al. VGKC-complex/LGI1-antibody encephalitis: clinical manifestations and response to immunotherapy. J Neuroimmunol 2013; 265: 75-81
  • 65 Wong SH, Saunders MD, Larner AJ. et al. An effective immunotherapy regimen for VGKC antibody-positive limbic encephalitis. J Neurol Neurosurg Psychiatry 2010; 81: 1167-1169
  • 66 Vincent A, Buckley C, Schott JM. et al. Potassium channel antibody-associated encephalopathy: a potentially immunotherapy-responsive form of limbic encephalitis. Brain 2004; 127: 701-712
  • 67 Irani SR, Stagg CJ, Schott JM. et al. Faciobrachial dystonic seizures: the influence of immunotherapy on seizure control and prevention of cognitive impairment in a broadening phenotype. Brain 2013; 136: 3151-3162
  • 68 Tobin WO, Lennon VA, Komorowski L. et al. DPPX potassium channel antibody. Neurology 2014; 83: 1797-1803
  • 69 Lai M, Hughes EG, Peng X. et al. AMPA receptor antibodies in limbic encephalitis alter synaptic receptor location. Ann Neurol 2009; 65: 424-434
  • 70 Lancaster E, Lai M, Peng X. et al. Antibodies to the GABA(B) receptor in limbic encephalitis with seizures: case series and characterisation of the antigen. Lancet Neurol 2010; 9: 67-76
  • 71 Sabater L, Gaig C, Gelpi E. et al. A novel non-rapid-eye movement and rapid-eye-movement parasomnia with sleep breathing disorder associated with antibodies to IgLON5: a case series, characterisation of the antigen, and post-mortem study. Lancet Neurol 2014; 13: 575-586
  • 72 Gorman MP. Update on diagnosis, treatment, and prognosis in opsoclonus-myoclonus-ataxia syndrome. Curr Opin Pediatr 2010; 22: 745-750
  • 73 Vedeler CA, Antoine JC, Giometto B. et al. Management of paraneoplastic neurological syndromes: report of an EFNS Task Force. Eur J Neurol 2006; 13: 682-690
  • 74 Pranzatelli MR, Tate ED, Swan JA. et al. B cell depletion therapy for new-onset opsoclonus-myoclonus. Mov Disord 2010; 25: 238-242
  • 75 Mitchell WG, Wooten AA, O’Neil SH. et al. Effect of Increased immunosuppression on developmental outcome of opsoclonus myoclonus syndrome (OMS). J Child Neurol 2015; 30: 976-982
  • 76 Armangué T, Sabater L, Torres-Vega E. et al. Clinical and Immunological Features of opsoclonus-myoclonus syndrome in the era of neuronal cell surface antibodies. JAMA Neurol 2016; 73: 417-424
  • 77 Bataller L, Graus F, Saiz A. et al. Clinical outcome in adult onset idiopathic or paraneoplastic opsoclonus-myoclonus. Brain 2001; 124: 437-443
  • 78 Armangue T, Titulaer MJ, Sabater L. et al. A novel treatment-responsive encephalitis with frequent opsoclonus and teratoma. Ann Neurol 2014; 75: 435-441
  • 79 Glatz K, Meinck H, Wildemann B. Parainfectious opsoclonus-myoclonus syndrome: high dose intravenous immunoglobulins are effective. J Neurol Neurosurg Psychiatry 2003; 74: 279-280
  • 80 Murinson BB, Guarnaccia JB. Stiff-person syndrome with amphiphysin antibodies. Neurology 2008; 71: 1955-1958
  • 81 McKeon A, Robinson MT, McEvoy KM. et al. Stiff-man syndrome and variants: clinical course, treatments, and outcomes. Arch Neurol 2012; 69: 230-238
  • 82 Carvajal-González A, Leite MI, Waters P. et al. Glycine receptor antibodies in PERM and related syndromes: characteristics, clinical features and outcomes. Brain 2014; 137: 2178-2192
  • 83 Spehlmann R, Norcross K, Rasmus SC. et al. Improvement of stiff-man syndrome with sodium valproate. Neurology 1981; 31: 1162-1163
  • 84 Sechi G, Barrocu M, Piluzza MG. et al. Levetiracetam in stiff-person syndrome. J Neurol 2008; 255: 1721-1725
  • 85 Holmøy T. Long-term effect of gabapentin in stiff limb syndrome: a case report. Eur Neurol 2007; 58: 251-252
  • 86 Stayer C, Tronnier V, Dressnandt J. et al. Intrathecal baclofen therapy for stiff-man syndrome and progressive encephalomyelopathy with rigidity and myoclonus. Neurology 1997; 49: 1591-1597
  • 87 Schmierer K, Valdueza JM, Bender A. et al. Atypical stiff-person syndrome with spinal MRI findings, amphiphysin autoantibodies, and immunosuppression. Neurology 1998; 51: 250-252
  • 88 Faissner S, Lukas C, Reinacher-Schick A. et al. Amphiphysin-positive paraneoplastic myelitis and stiff-person syndrome. Neurol Neuroimmunol Neuroinflammation 2016; 3: e285
  • 89 Sommer C, Weishaupt A, Brinkhoff J. et al. Paraneoplastic stiff-person syndrome: passive transfer to rats by means of IgG antibodies to amphiphysin. Lancet 2005; 365: 1406-1411
  • 90 Dalakas MC, Fujii M, Li M. et al. High-dose intravenous immune globulin for stiff-person syndrome. N Engl J Med 2001; 345: 1870-1876
  • 91 Stiff-Man-Syndrom. Leitlinie der Deutschen Gesellschaft für Neurologie. Im Internet: www.dgn.org [Stand: Sep. 2012]
  • 92 Pagano MB, Murinson BB, Tobian AAR. et al. Efficacy of therapeutic plasma exchange for treatment of stiff-person syndrome. Transfusion (Paris) 2014; 54: 1851-1856
  • 93 Baker M, Das M, Isaacs J. et al. Treatment of stiff person syndrome with rituximab. J Neurol Neurosurg Psychiatry 2005; 76: 999-1001
  • 94 Flanagan EP, McKeon A, Lennon VA. et al. Paraneoplastic isolated myelopathy: clinical course and neuroimaging clues. Neurology 2011; 76: 2089-2095
  • 95 Pittock SJ, Lennon VA. Aquaporin-4 autoantibodies in a paraneoplastic context. Arch Neurol 2008; 65: 629-632
  • 96 Figueroa M, Guo Y, Tselis A. et al. Paraneoplastic neuromyelitis optica spectrum disorder associated with metastatic carcinoid expressing aquaporin-4. JAMA Neurol 2014; 71: 495-498
  • 97 Leypoldt F, Eichhorn P, Saager C. et al. Successful immunosuppressive treatment and long-term follow-up of anti-Ri-associated paraneoplastic myelitis. J Neurol Neurosurg Psychiatry 2006; 77: 1199-1200
  • 98 Rajabally YA, Qaddoura B, Abbott RJ. Steroid-responsive paraneoplastic demyelinating neuropathy and myelopathy associated with breast carcinoma. J Clin Neuromuscul Dis 2008; 10: 65-69
  • 99 Klein CJ. Autoimmune-mediated peripheral neuropathies and autoimmune pain. Handb Clin Neurol 2016; 133: 417-446
  • 100 McKeon A, Lennon VA, Lachance DH. et al. Ganglionic acetylcholine receptor autoantibody. Arch Neurol 2009; 66: 735-741
  • 101 Iodice V, Kimpinski K, Vernino S. et al. Efficacy of immunotherapy in seropositive and seronegative putative autoimmune autonomic ganglionopathy. Neurology 2009; 72: 2002-2008
  • 102 Titulaer MJ, Lang B, Verschuuren JJ. Lambert-Eaton myasthenic syndrome: from clinical characteristics to therapeutic strategies. Lancet Neurol 2011; 10: 1098-1107
  • 103 Diagnostik und Therapie der Myasthenia gravis und des Lambert-Eaton-Syndroms. Leitlinie der Deutschen Gesellschaft für Neurologie. Im Internet: www.dgn.org [Stand: Sep. 2014]
  • 104 Wang J, Guo G, Chen G. et al. Meta-analysis of the association of dermatomyositis and polymyositis with cancer. Br J Dermatol 2013; 169: 838-847
  • 105 Chinoy H, Fertig N, Oddis CV. et al. The diagnostic utility of myositis autoantibody testing for predicting the risk of cancer-associated myositis. Ann Rheum Dis 2007; 66: 1345-1349
  • 106 Rozelle A, Trieu S, Chung L. Malignancy in the setting of the anti-synthetase syndrome. J Clin Rheumatol Pract Rep Rheum Musculoskelet Dis 2008; 14: 285-288
  • 107 Hill CL, Zhang Y, Sigurgeirsson B. et al. Frequency of specific cancer types in dermatomyositis and polymyositis: a population-based study. Lancet 2001; 357: 96-100
  • 108 Suber TL, Casciola-Rosen L, Rosen A. Mechanisms of disease: autoantigens as clues to the pathogenesis of myositis. Nat Clin Pract Rheumatol 2008; 4: 201-209
  • 109 Dankó K, Ponyi A, Molnar AP. et al. Paraneoplastic myopathy. Curr Opin Rheumatol 2009; 21: 594-598
  • 110 Myositissyndrome, Leitlinien der Deutschen Gesellschaft für Neurologie. Im Internet: www.dgn.org [Stand: Sep. 2014]
  • 111 Khosroshahi A, Carruthers MN, Deshpande V. et al. Rituximab for the treatment of IgG4-related disease: lessons from 10 consecutive patients. Medicine (Baltimore) 2012; 91: 57-66
  • 112 Gomez AM, Willcox N, Molenaar PC. et al. Targeting plasma cells with proteasome inhibitors: possible roles in treating myasthenia gravis?. Ann N Y Acad Sci 2012; 1274: 48-59
  • 113 Tanaka T, Narazaki M, Kishimoto T. Anti-interleukin-6 receptor antibody, tocilizumab, for the treatment of autoimmune diseases. FEBS Lett 2011; 585: 3699-3709
  • 114 Ayzenberg I, Kleiter I, Schröder A. et al. Interleukin 6 receptor blockade in patients with neuromyelitis optica nonresponsive to anti-CD20 therapy. JAMA Neurol 2013; 70: 394-397
  • 115 Krogias C, Hoepner R, Müller A. et al. Successful treatment of anti-Caspr2 syndrome by interleukin 6 receptor blockade through tocilizumab. JAMA Neurol 2013; 70: 1056-1059
  • 116 Ringelstein M, Ayzenberg I, Harmel J. et al. Long-term therapy with interleukin 6 receptor blockade in highly active neuromyelitis optica spectrum disorder. JAMA Neurol 2015; 72: 756-763
  • 117 Orange D, Frank M, Tian S. et al. Cellular immune suppression in paraneoplastic neurologic syndromes targeting intracellular antigens. Arch Neurol 2012; 69: 1132-1140
  • 118 Bertrand A, Kostine M, Barnetche T. et al. Immune related adverse events associated with anti-CTLA-4 antibodies: systematic review and meta-analysis. BMC Med 2015; 13: 211
  • 119 Williams TJ, Benavides DR, Patrice K-A. et al. Association of autoimmune encephalitis with combined immune checkpoint inhibitor treatment for metastatic cancer. JAMA Neurol 2016; 73: 928-933